por que contenga las palabras

Busqueda avanzada

5 documentos corresponden a la consulta.
Palabras contadas: antennal: 11, lobe: 22
Deisig, N. - Kropf, J. - Vitecek, S. - Pevergne, D. - Rouyar, A. - Sandoz, J.-C. - Lucas, P. - Gadenne, C. - Anton, S. - Barrozo, R.
PLoS ONE 2012;7(3)
2012

Descripción: Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants), mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a) recordings from individual sensilla to study responses of olfactory receptor neurons, b) in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c) intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization. © 2012 Deisig et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Barrozo, R.B. - Gadenne, C. - Anton, S.
J. Exp. Biol. 2010;213(17):2933-2939
2010

Descripción: In the moth, Agrotis ipsilon, newly mated males cease to be attracted to the female-produced sex pheromone, preventing them from re-mating until the next night, by which time they would have refilled their reproductive glands for a potential new ejaculate. The behavioural plasticity is accompanied by a decrease in neuron sensitivity within the primary olfactory centre, the antennal lobe (AL). However, it was not clear whether the lack of the sexually guided behaviour results from the absence of sex pheromone detection in the ALs, or if they ignore it in spite of detection, or if the sex pheromone itself inhibits attraction behaviour after mating. To test these hypotheses, we performed behavioural tests and intracellular recordings of AL neurons to non-pheromonal odours (flower volatiles), different doses of sex pheromone and their mixtures in virgin and newly mated males. Our results show that, although the behavioural and AL neuron responses to flower volatiles alone were similar between virgin and mated males, the behavioural response of mated males to flower odours was inhibited by adding pheromone doses above the detection threshold of central neurons. Moreover, we show that the sex pheromone becomes inhibitory by differential central processing: below a specific threshold, it is not detected within the AL; above this threshold, it becomes inhibitory, preventing newly mated males from responding even to plant odours. Mated male moths have thus evolved a strategy based on transient odour-selective central processing, which allows them to avoid the risk-taking, energy-consuming search for females and delay re-mating until the next night for a potential new ejaculate. © 2010. Published by The Company of Biologists Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Anton, S. - Evengaard, K. - Barrozo, R.B. - Anderson, P. - Skals, N.
Proc. Natl. Acad. Sci. U. S. A. 2011;108(8):3401-3405
2011

Descripción: Modulation of sensitivity to sensory cues by experience is essential for animals to adapt to a changing environment. Sensitization and adaptation to signals of the same modality as a function of experience have been shown in many cases, and some of the neurobiological mechanisms underlying these processes have been described. However, the influence of sensory signals on the sensitivity of a different modality is largely unknown. In males of the noctuid moth, Spodoptera littoralis, the sensitivity to the female-produced sex pheromone increases 24 h after a brief preexposure with pheromone at the behavioral and central nervous level. Here we show that this effect is not confined to the same sensory modality: the sensitivity of olfactory neurons can also be modulated by exposure to a different sensory stimulus, i.e., a pulsed stimulus mimicking echolocating sounds from attacking insectivorous bats. We tested responses of preexposed male moths in a walking bioassay and recorded from neurons in the primary olfactory center, the antennal lobe. We show that brief exposure to a bat call, but not to a behaviorally irrelevant tone, increases the behavioral sensitivity of male moths to sex pheromone 24 h later in the same way as exposure to the sex pheromone itself. The observed behavioral modification is accompanied by an increase in the sensitivity of olfactory neurons in the antennal lobe. Our data provide thus evidence for cross-modal experience-dependent plasticity not only on the behavioral level, but also on the central nervous level, in an insect.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Dupuy, F. - Josens, R. - Giurfa, M. - Sandoz, J.-C.
BMC Neurosci. 2010;11
2010

Descripción: Background: Olfactory systems create representations of the chemical world in the animal brain. Recordings of odour-evoked activity in the primary olfactory centres of vertebrates and insects have suggested similar rules for odour processing, in particular through spatial organization of chemical information in their functional units, the glomeruli. Similarity between odour representations can be extracted from across-glomerulus patterns in a wide range of species, from insects to vertebrates, but comparison of odour similarity in such diverse taxa has not been addressed. In the present study, we asked how 11 aliphatic odorants previously tested in honeybees and rats are represented in the antennal lobe of the ant Camponotus fellah, a social insect that relies on olfaction for food search and social communication.Results: Using calcium imaging of specifically-stained second-order neurons, we show that these odours induce specific activity patterns in the ant antennal lobe. Using multidimensional analysis, we show that clustering of odours is similar in ants, bees and rats. Moreover, odour similarity is highly correlated in all three species.Conclusion: This suggests the existence of similar coding rules in the neural olfactory spaces of species among which evolutionary divergence happened hundreds of million years ago. © 2010 Dupuy et al; licensee BioMed Central Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Arenas, A. - Ramírez, G.P. - Balbuena, M.S. - Farina, W.M.
Front. Physiol. 2013;4 AUG
2013

Descripción: Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor based on age polyethism. These studies are mainly focused on the role and importance of experiences occurred during the first days of the adult lifespan, their impact on foraging decisions, and their contribution to coordinate food gathering. Odor-rewarded experiences during the first days of honeybee adulthood alter the responsiveness to sucrose, making young hive bees more sensitive to assess gustatory features about the nectar brought back to the hive and affecting the dynamic of the food transfers and the propagation of food-related information within the colony. Early olfactory experiences lead to stable and long-term associative memories that can be successfully recalled after many days, even at foraging ages. Also they improve memorizing of new associative learning events later in life. The establishment of early memories promotes stable reorganization of the olfactory circuits inducing structural and functional changes in the antennal lobe (AL). Early rewarded experiences have relevant consequences at the social level too, biasing dance and trophallaxis partner choice and affecting recruitment. Here, we revised recent results in bees' physiology, behavior, and sociobiology to depict how the early experiences affect their cognition abilities and neural-related circuits. © 2013 Arenas, Ramírez, Balbuena and Farina.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo