por que contenga las palabras

Busqueda avanzada

8 documentos corresponden a la consulta.
Palabras contadas: flux: 151, surface: 226
Démoulin, P. - Dasso, S. - Janvier, M.
Astron. Astrophys. 2013;550
2013

Descripción: Context. Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs). One property of MCs is the presence of a magnetic flux rope. Is the difference between ICMEs with and without MCs intrinsic or rather due to an observational bias? Aims. As the spacecraft has no relationship with the MC trajectory, the frequency distribution of MCs versus the spacecraft distance to the MCs' axis is expected to be approximately flat. However, Lepping & Wu (2010, Ann. Geophys., 28, 1539) confirmed that it is a strongly decreasing function of the estimated impact parameter. Is a flux rope more frequently undetected for larger impact parameter? Methods. In order to answer the questions above, we explore the parameter space of flux rope models, especially the aspect ratio, boundary shape, and current distribution. The proposed models are analyzed as MCs by fitting a circular linear force-free field to the magnetic field computed along simulated crossings. Results. We find that the distribution of the twist within the flux rope and the non-detection due to too low field rotation angle or magnitude only weakly affect the expected frequency distribution of MCs versus impact parameter. However, the estimated impact parameter is increasingly biased to lower values as the flux rope cross section is more elongated orthogonally to the crossing trajectory. The observed distribution of MCs is a natural consequence of a flux rope cross section flattened on average by a factor 2 to 3 depending on the magnetic twist profile. However, the faster MCs at 1 AU, with V > 550 km s-1, present an almost uniform distribution of MCs vs. impact parameter, which is consistent with round-shaped flux ropes, in contrast with the slower ones. Conclusions. We conclude that the sampling of MCs at various distances from the axis does not significantly affect their detection. The large part of ICMEs without MCs could be due to a too strict criteria for MCs or to the fact that these ICMEs are encountered outside their flux rope or near the leg region, or they do not contain a flux rope. © 2013 ESO.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Bianchi, A.A. - Pino, D.R. - Isbert Perlender, H.G. - Osiroff, A.P. - Segura, V. - Lutz, V. - Clara, M.L. - Balestrini, C.R. - Piola, A.R.
J. Geophys. Res. C Oceans 2009;114(3)
2009

Tipo de documento: info:ar-repo/semantics/artículo

Démoulin, P. - Dasso, S.
Astron. Astrophys. 2009;507(2):969-980
2009

Descripción: Context. Magnetic clouds (MCs) are formed by magnetic flux ropes that are ejected from the Sun as coronal mass ejections. These structures generally have low plasma beta and travel through the interplanetary medium interacting with the surrounding solar wind. Thus, the dynamical evolution of the internal magnetic structure of a MC is a consequence of both the conditions of its environment and of its own dynamical laws, which are mainly dominated by magnetic forces.Aims. With in-situ observations the magnetic field is only measured along the trajectory of the spacecraft across the MC. Therefore, a magnetic model is needed to reconstruct the magnetic configuration of the encountered MC. The main aim of the present work is to extend the widely used cylindrical model to arbitrary cross-section shapes.Methods. The flux rope boundary is parametrized to account for a broad range of shapes. Then, the internal structure of the flux rope is computed by expressing the magnetic field as a series of modes of a linear force-free field.Results. We analyze the magnetic field profile along straight cuts through the flux rope, in order to simulate the spacecraft crossing through a MC. We find that the magnetic field orientation is only weakly affected by the shape of the MC boundary. Therefore, the MC axis can approximately be found by the typical methods previously used (e.g., minimum variance). The boundary shape affects the magnetic field strength most. The measurement of how much the field strength peaks along the crossing provides an estimation of the aspect ratio of the flux-rope cross-section. The asymmetry of the field strength between the front and the back of the MC, after correcting for the time evolution (i.e., its aging during the observation of the MC), provides an estimation of the cross-section global bending. A flat or/and bent cross-section requires a large anisotropy of the total pressure imposed at the MC boundary by the surrounding medium.Conclusions. The new theoretical model developed here relaxes the cylindrical symmetry hypothesis. It is designed to estimate the cross-section shape of the flux rope using the in-situ data of one spacecraft. This allows a more accurate determination of the global quantities, such as magnetic fluxes and helicity. These quantities are especially important for both linking an observed MC to its solar source and for understanding the corresponding evolution. © 2009 ESO.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Bianchi, A.A. - Bianucci, L. - Piola, A.R. - Pino, D.R. - Schloss, I. - Poisson, A. - Balestrini, C.F.
J. Geophys. Res. C Oceans 2005;110(7):1-10
2005

Descripción: The thermohaline structure across the tidal fronts of the continental shelf off Patagonia is analyzed using historical and recent summer hydrographic sections. The near-summer tidal front location is determined on the basis of the magnitude of vertical stratification of the water column as measured by the Simpson parameter. Sea surface and air CO2 partial pressures based on data from eleven transects collected in summer and fall from 2000 to 2004 are used to estimate CO2 fluxes over the shelf. The near-shore waters are a source of CO2 to the atmosphere while the midshelf region is a CO2 sink. The transition between source and sink regions closely follows the location of tidal fronts, suggesting a link between vertical stratification of the water column and the regional CO2 balance. The highest surface values of Chl a are associated with the strongest CO2 sinks. The colocation of lowest CO2 partial pressure (pCO2) and highest Chl a suggests that phytoplankton blooms on the stratified side of the fronts draw the ocean's CO2 to very low levels. The mean shelf sea-air difference in pCO2 (ΔpCO2) is -24 μatm and rises to -29 μatm if the shelf break front is included. Peaks in ΔpCO2 of -110 μatm, among the highest observed in the global ocean, are observed. The estimated summer mean CO2 flux over the shelf is -4.4 mmol m-2 d-1 and rises to -5.7 mmol m-2 d-1 when the shelf break area is taken into account. Thus, during the warm season the shelf off Patagonia is a significant atmospheric CO2 sink. Copyright 2005 by the American Geophysical Union.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Nakwacki, M.S. - Dasso, S. - Démoulin, P. - Mandrini, C.H. - Gulisano, A.M.
Astron. Astrophys. 2011;535
2011

Descripción: Context. Significant quantities of magnetized plasma are transported from the Sun to the interstellar medium via interplanetary coronal mass ejections (ICMEs). Magnetic clouds (MCs) are a particular subset of ICMEs, forming large-scale magnetic flux ropes. Their evolution in the solar wind is complex and mainly determined by their own magnetic forces and the interaction with the surrounding solar wind. Aims. Magnetic clouds are strongly affected by the surrounding environment as they evolve in the solar wind. We study expansion of MCs, its consequent decrease in magnetic field intensity and mass density, and the possible evolution of the so-called global ideal-MHD invariants. Methods. In this work we analyze the evolution of a particular MC (observed in March 1998) using in situ observations made by two spacecraft approximately aligned with the Sun, the first one at 1 AU from the Sun and the second one at 5.4 AU. We describe the magnetic configuration of the MC using different models and compute relevant global quantities (magnetic fluxes, helicity, and energy) at both heliodistances. We also tracked this structure back to the Sun, to find out its solar source. Results. We find that the flux rope is significantly distorted at 5.4 AU. From the observed decay of magnetic field and mass density, we quantify how anisotropic is the expansion and the consequent deformation of the flux rope in favor of a cross section with an aspect ratio at 5.4 AU of ≈ 1.6 (larger in the direction perpendicular to the radial direction from the Sun). We quantify the ideal-MHD invariants and magnetic energy at both locations, and find that invariants are almost conserved, while the magnetic energy decays as expected with the expansion rate found. Conclusions. The use of MHD invariants to link structures at the Sun and the interplanetary medium is supported by the results of this multi-spacecraft study. We also conclude that the local dimensionless expansion rate, which is computed from the velocity profile observed by a single-spacecraft, is very accurate for predicting the evolution of flux ropes in the solar wind. © 2011 ESO.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Giuliani, L. - Grondona, D. - Kelly, H.
AIP Conf. Proc. 2006;875:199-202
2006

Descripción: An experimental study of the plasma jet generated in a pulsed copper vacuum arc with an annular anode and operated with a linear magnetic filter is presented. Two types of filters were employed, one consisting of an insulating duct and the other of a conducting duct, both of them surrounded by an external coil, which generates the axial magnetic field. To improve the ion flux at the filter entrance another auxiliary magnetic field in the cathode region was applied (focusing field). Also, the cathode shape was modified to confine the cathode spot onto the front cathode surface. Operating the arc under vacuum conditions, probe measurements of the ion saturation current and the plasma potential at different axial positions along the ducts and for different filtering magnetic field values are reported. A comparison between both kinds of filters is also presented. © 2006 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Hocke, K. - Tsuda, T. - De La Torre, A.
J. Geophys. Res. D Atmos. 2002;107(20):5-1-5-16
2002

Descripción: Longitudinal dependences of stratospheric gravity wave (GW) fluctuations and lower ionospheric irregularities (sporadic E) at midlatitudes are studied by means of radio occultation data of the Global Positioning System/Meteorology Experiment (GPS/MET) satellite mission. The zonal average of temperature variance of GW fluctuations with vertical scales less than 7 km at northern midlatitudes is observed to be similar to that at southern midlatitudes, but there is a significant interhemispheric difference in the longitudinal dependence of GW fluctuations. The GPS/MET data at northern midlatitudes show a rapid change of the gravity wave distribution from 25 to 35 km height, resulting in a broad maximum of temperature variance located over the Atlantic and Eurasia. We only find in the wave distribution at h = 25 km some weak traces of possible orographic effects. On the other hand, the distribution of GW fluctuations at southern midlatitudes has a strong and sharp maximum over Andes, which is obviously due to orographic wave generation by the interaction of surface wind with the Andean mountain ridge. This observation of the new GPS radio occultation technique is in agreement with previous measurements of spaceborne microwave and infrared limb sounders. The amplitude of the average wave field increases with height over Andes, while the amplitude maximum moves westward, against the prevailing wind. The temperature fluctuations have an apparent, dominant vertical wavelength of around 6 km. In situ measurements by a balloon-borne rawinsonde at Ushuaia, Argentina (54.7°S, 68.1°W) are compared to a simultaneous GPS/MET temperature profile. The balloon observations of temperature and horizontal wind are interpreted by a large amplitude mountain wave propagating to the upper stratosphere. Wave characteristics and atmospheric background conditions are investigated in detail for this mountain wave observation. Finally, the GPS/MET experiment indicates enhanced sporadic E in the lower ionosphere over Southern Andes. We assume that these plasma irregularities are generated by enhanced, upward wave flux due to the possible orographic ettect of Andes. Copyright 2002 by the American Geophysical Union.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Hocke, K. - Tsuda, T. - De La Torre, A.
J. Geophys. Res. D Atmos. 2002;107(20):XIX-XX
2002

Descripción: Longitudinal dependences of stratospheric gravity wave (GW) fluctuations and lower ionospheric irregularities (sporadic E) at midlatitudes are studied by means of radio occultation data of the Global Positioning System/Meteorology Experiment (GPS/MET) satellite mission. The zonal average of temperature variance of GW fluctuations with vertical scales less than 7 km at northern midlatitudes is observed to be similar to that at southern midlatitudes, but there is a significant interhemispheric difference in the longitudinal dependence of GW fluctuations. The GPS/MET data at northern midlatitudes show a rapid change of the gravity wave distribution from 25 to 35 km height, resulting in a broad maximum of temperature variance located over the Atlantic and Eurasia. We only find in the wave distribution at h = 25 km some weak traces of possible orographic effects. On the other hand, the distribution of GW fluctuations at southern midlatitudes has a strong and sharp maximum over Andes, which is obviously due to orographic wave generation by the interaction of surface wind with the Andean mountain ridge. This observation of the new GPS radio occultation technique is in agreement with previous measurements of spaceborne microwave and infrared limb sounders. The amplitude of the average wave field increases with height over Andes, while the amplitude maximum moves westward, against the prevailing wind. The temperature fluctuations have an apparent, dominant vertical wavelength of around 6 km. In situ measurements by a balloon-borne rawinsonde at Ushuaia, Argentina (54.7°S, 68.1°W) are compared to a simultaneous GPS/MET temperature profile. The balloon observations of temperature and horizontal wind are interpreted by a large amplitude mountain wave propagating to the upper stratosphere. Wave characteristics and atmospheric background conditions are investigated in detail for this mountain wave observation. Finally, the GPS/MET experiment indicates enhanced sporadic E in the lower ionosphere over Southern Andes. We assume that these plasma irregularities are generated by enhanced, upward wave flux due to the possible orographic effect of Andes. Copyright 2002 by the American Geophysical Union.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo