por que contenga las palabras

Busqueda avanzada

37 documentos corresponden a la consulta.
Palabras contadas: apoptosis: 124
Ceruti, J.M. - Scassa, M.E. - Flo, J.M. - Varone, C.L. - Cánepa, E.T.
Oncogene 2005;24(25):4065-4080
2005

Temas:   Apoptosis -  CDK4/6 -  DNA repair -  INK4 -  Neuroblastoma -  UV -  caspase 3 -  DNA -  DNA fragment -  RNA

Descripción: The genetic instability driving tumorigenesis is fuelled by DNA damage and by errors made by the DNA replication. Upon DNA damage the cell organizes an integrated response not only by the classical DNA repair mechanisms but also involving mechanisms of replication, transcription, chromatin structure dynamics, cell cycle progression, and apoptosis. In the present study, we investigated the role of p19INK4d in the response driven by neuroblastoma cells against DNA injury caused by UV irradiation. We show that p19INK4d is the only INK4 protein whose expression is induced by UV light in neuroblastoma cells. Furthermore, p19INK4d translocation from cytoplasm to nucleus is observed after UV irradiation. Ectopic expression of p19INK4d clearly reduces the UV-induced apoptosis as well as enhances the cellular ability to repair the damaged DNA. It is clearly shown that DNA repair is the main target of p19INK4d effect and that diminished apoptosis is a downstream event. Importantly, experiments performed with CDK4 mutants suggest that these p19INK4d effects would be independent of its role as a cell cycle checkpoint gene. The results presented herein uncover a new role of p19INK4d as regulator of DNA-damage-induced apoptosis and suggest that it protects cells from undergoing apoptosis by allowing a more efficient DNA repair. We propose that, in addition to its role as cell cycle inhibitor, p19INK4d is involved in maintenance of DNA integrity and, therefore, would contribute to cancer prevention. © 2005 Nature Publishing Group. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Costas, M.A. - Müller Igaz, L. - Holsboer, F. - Arzt, E.
Biochim. Biophys. Acta Mol. Cell Res. 2000;1499(1-2):122-129
2000

Descripción: The cellular resistance to tumor necrosis factor (TNF) of most cell types has been attributed to both a protective pathway induced by this cytokine and the preexistence of protective factors in the target cell. NF-κB has been postulated as one of the principal factors involved in antiapoptotic gene expression control on TNF-resistant cells. We have previously shown that glucocorticoids protect the naturally TNF-sensitive L-929 cells from apoptosis. Here we analyze the role of NF-κB and glucocorticoids on TNF-induced apoptosis in L-929 cells. We found that inhibition of NF-κB enhanced the sensitivity to TNF-induced apoptosis. Glucocorticoids inhibited NF-κB transactivation via IκB induction. Moreover, glucocorticoids protected from TNF-induced apoptosis even when NF-κB activity was inhibited by stable or transient expression of the superrepressor IκB. These results demonstrate that although glucocorticoids inhibit NF-κB transactivation in these cells, this is not required for their protection from TNF-induced apoptosis. (C) 2000 Elsevier Science B.V.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Salamone, G.V. - Petracca, Y. - Bass, J.I.F. - Rumbo, M. - Nahmod, K.A. - Gabelloni, M.L. - Vermeulen, M.E. - Matteo, M.J. - Geffner, J.R. - Trevani, A.S.
Lab. Invest. 2010;90(7):1049-1059
2010

Descripción: Neutrophils are short-lived cells that rapidly undergo apoptosis. However, their survival can be regulated by signals from the environment. Flagellin, the primary component of the bacterial flagella, is known to induce neutrophil activation. In this study we examined the ability of flagellin to modulate neutrophil apoptosis. Neutrophils cultured for 12 and 24 h in the presence of flagellin from Salmonella thyphimurim at concentrations found in pathological situations underwent a marked prevention of apoptosis. In contrast, Helicobacter pylori flagellin did not affect neutrophil survival, suggesting that Salmonella flagellin exerts the antiapoptotic effect by interacting with TLR5. The delaying in apoptosis mediated by Salmonella flagellin was coupled to higher expression levels of the antiapoptotic protein Mcl-1 and lower levels of activated caspase-3. Analysis of the signaling pathways indicated that Salmonella flagellin induced the activation of the p38 and ERK1/2 MAPK pathways as well as the PI3K/Akt pathway. Furthermore, it also stimulated IBα degradation and the phosphorylation of the p65 subunit, suggesting that Salmonella flagellin also triggers NF-B activation. Moreover, the pharmacological inhibition of ERK1/2 pathway and NF-B activation partially prevented the antiapoptotic effects exerted by flagellin. Finally, the apoptotic delaying effect exerted by flagellin was also evidenced when neutrophils were cultured with whole heat-killed S. thyphimurim. Both a wild-type and an aflagellate mutant S. thyphimurim strain promoted neutrophil survival; however, when cultured in low bacteria/neutrophil ratios, the flagellate bacteria showed a higher capacity to inhibit neutrophil apoptosis, although both strains showed a similar ability to induce neutrophil activation. Taken together, our results indicate that flagellin delays neutrophil apoptosis by a mechanism partially dependent on the activation of ERK1/2 MAPK and NF-B. The ability of flagellin to delay neutrophil apoptosis could contribute to perpetuate the inflammation during infections with flagellated bacteria. © 2010 USCAP, Inc All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Alaniz, L. - García, M.G. - Gallo-Rodriguez, C. - Agusti, R. - Sterín-Speziale, N. - Hajos, S.E. - Alvarez, E.
Glycobiology 2006;16(5):359-367
2006

Descripción: Several studies indicate that hyaluronan oligosaccharides (oHA) are able to modulate growth and cell survival in solid tumors; however, no studies have been undertaken to analyze the effect of oHA on T-lymphoid disorders. In this work we showed that oHA were able to induce apoptosis in lymphoma cell lines. Since PI3-K/Akt and nuclear factor-κB (NF-κB) are major factors involved in cell survival and anti-apoptotic pathways in lymphoma cells, we hypothesized that oHA could induce apoptosis through inhibition of these pathways. oHA were identified by a method which allows characterization of length using a high pH anion exchange chromatography with pulse amperometric detection (HPAEC-PAD). oHA inhibited PIP3 production (principal product of PI3-K activity) and reduced Akt phosphorylation levels, similarly to the specific inhibitor wortmannin. However, treatment with either oHA or wortmannin failed to inhibit constitutive NF-κB activity and modulate IκBα protein levels, suggesting that PI3-K and NF-κB signaling pathways are not related in the cell lines used. Cell behavior differed using native hyaluronan (HA), which induced PIP3 production, Akt phosphorylation, and NF-κB activation, although not related with cell survival since treatment with native HA showed no effect on apoptosis. Our results suggest that oHA induce apoptosis by suppression of PI3-K/Akt cell survival pathway without involving NF-κB activation, through a mechanism that differs from the one mediated by native HA. © 2006 Oxford University Press.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Rodrigues, J.M. - Elias, F. - Montaner, A. - Flo, J. - Lopez, R.A. - Zorzopulos, J. - Franco, R.J. - Lenial, S.P. - Lopez Salón, M. - Pirpignani, M.L. - Solimano, J. - Garay, G. - Riveros, D. - Fernandez, J. - Cacchione, R. - Dupont, J.
Medicina (Argentina) 2006;66(1):9-16
2006

Descripción: Oligonucleotides (ODNs) of the PyNTTTTGT class directly stimulate B lymphocytes and plasmacytoid dendritic cells of the immune system of primates. Here we investigated the ability of the PyNTTTTGT ODN prototype IMT504 to regulate the expression of surface molecules and apoptosis in human B-chronic lymphocytic leukemia (CLL) cells. The surface molecules CD25, CD40, CD80 and CD86 were up-regulated upon incubation of the B-CLL cells with IMT504. Co-stimulation with IL-2 resulted in further up-regulation. IMT504-activated B-CLL cells were also good stimulators of T cells in allogeneic mixed lymphocyte reactions and co-stimulation with IL-2 improved this stimulation capacity. Apoptosis of the B-CLL cells in vitro was also stimulated by incubation with IMT504. In this case, co-stimulation with IL-2 was not significant. Furthermore, B-CLL cells of all the patients studied developed an immunogenic phenotype and entered stimulated apoptosis upon in vitro incubation with IMT504 independently of the mutational status of their 1gVH genes, becoming a good marker for tumor progression.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Pregi, N. - Vittori, D. - Pérez, G. - Leirós, C.P. - Nesse, A.
Biochim. Biophys. Acta Mol. Cell Res. 2006;1763(2):238-246
2006

Descripción: Since apoptosis appeared to be related to neurodegenerative processes, neuroprotection has been involved in investigation of therapeutic approaches focused upon pharmacological agents to prevent neuronal programmed cell death. In this regard, erythropoietin (Epo) seems to play a critical role. The present work was focused on the study of the Epo protective effect upon human neuroblastoma SH-SY5Y cells subjected to differentiation by staurosporine. Under this condition, profuse neurite outgrowth was accompanied by programmed cell death (35% of apoptotic cells by Hoechst assay, showing characteristic DNA ladder pattern). A previous treatment with recombinant human Epo (rHuEpo) increased the expression of the specific receptor for Epo while prevented apoptosis. Simultaneously, morphological changes in neurite elongation and interconnection induced by staurosporine were blocked by Epo. These Epo effects proved to be associated to the induction of Bcl-xL at the mRNA and protein levels (RT-PCR and Western blot after immunoprecipitation) and were mediated by activation of pathways inhibited by wortmannin. In conclusion, the fact that both events induced by staurosporine, cell apoptosis and differentiation, were prevented in SH-SY5Y cells previously exposed to rHuEpo suggests interrelated signaling pathways triggered by the Epo/EpoR interaction. © 2005 Elsevier B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Parborell, F. - Abramovich, D. - Tesone, M.
Biol. Reprod. 2008;78(3):506-513
2008

Descripción: The angiopoietin (ANGPT) receptor (TEK) system plays a crucial role in blood vessel development and regression. To date, no reports have addressed the actions of the anti-ANGPT1 antibody on gonadotropin-stimulated follicular development and atresia in the ovary. Therefore, in this study we specifically investigated whether ANGPT1 plays a critical intraovarian survival role for gonadotropin-dependent folliculogenesis. In particular, we examined the effect of local administration of anti-ANGPT1 antibody on follicular development, apoptosis, and expression of BCL2 protein family members (BAX, BCL2, and BCL2L1), TNFRSF6, and FASLG in ovarian follicles from prepubertal eCG-treated rats. The inhibition of ANGPT1 caused an increase in the number of atretic follicles and a decrease in the number of both antral follicles (AFs) and preovulatory follicles in gonadotropin-treated rat ovaries. Taking into account that follicular atresia is mediated by apoptosis, we analyzed the effect of the antibody against ANGPT1 on programmed cell death. The inhibition of the action of ANGPT1 caused an increase both in the number of apoptotic granulosa cells in AFs and in the spontaneous DNA fragmentation of AFs cultured in serum-free medium. Besides, AFs obtained from rats treated with intraovarian antibodies against ANGPT1 showed both a decrease in BCL2 and an increase in BAX protein levels. Moreover, a reduction in the BCL2L1L/BCL2L1S ratio was observed in this group, with a reduction of BCL2L1L greater than that of BCL2L1S, thus showing that the expression of these antiapoptotic proteins is lower in follicles from treated rats than in those from untreated ones. Our findings suggest that the inhibition of ANGPT1 activity causes an increase in the number of atretic follicles mediated by ovarian apoptosis through an imbalance in the ratio of antiapoptotic to proapoptotic proteins. This could take place through a paracrine effect on granulosa cells mediated by the TEK receptor in theca cells. Therefore, these data clearly indicate that ANGPT1 is necessary for follicular development induced by gonadotropins. © 2008 by the Society for the Study of Reproduction, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Magariños, M.P. - Sánchez-Margalet, V. - Kotler, M. - Calvo, J.C. - Varone, C.L.
Biol. Reprod. 2007;76(2):203-210
2007

Descripción: Leptin, the 16-kDa protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta. In the present work, we studied a possible effect of leptin on trophoblastic cell proliferation, survival, and apoptosis. Recombinant human leptin added to JEG-3 and BeWo choriocarcinoma cell lines showed a stimulatory effect on cell proliferation up to 3 and 2.4 times, respectively, measured by 3H-thymidine incorporation and cell counting. These effects were time and dose dependent. Maximal effect was achieved at 250 ng leptin/ml for JEG-3 cells and 50 ng leptin/ml for BeWo cells. Moreover, by inhibiting endogenous leptin expression with 2 μM of an antisense oligonucleotide (AS), cell proliferation was diminished. We analyzed cell population distribution during the different stages of cell cycle by fluorescence-activated cell sorting, and we found that leptin treatment displaced the cells towards a G2/M phase. We also found that leptin upregulated cyclin D1 expression, one of the key cell cycle-signaling proteins. Since proliferation and death processes are intimately related, the effect of leptin on cell apoptosis was investigated. Treatment with 2 μM leptin AS increased the number of apoptotic cells 60 times, as assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and the caspase-3 activity was increased more than 2 fold. This effect was prevented by the addition of 100 ng leptin/ml. In conclusion, we provide evidence that suggests that leptin is a trophic and mitogenic factor for trophoblastic cells by virtue of its inhibiting apoptosis and promoting proliferation. © 2007 by the Society for the Study of Reproduction, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Casas, A. - Fukuda, H. - Di Venosa, G. - Batlle, A.
Br. J. Cancer 2001;85(2):279-284
2001

Descripción: The use of more lipophilic derivatives of 5-aminolevulinic acid (ALA) is expected to have better diffusing properties, and after conversion into the parent ALA, to reach a higher protoporphyrin IX (PPIX) formation rate, thus improving the efficacy of topical photodynamic therapy (PDT). Here we have analysed the behaviour of 3 ALA derivatives (ALA methyl-ester, hexyl ester and a 2-sided derivative) regarding PPIX formation, efficiency in photosensitizing cells and mechanism of cellular death. The maximum amount of porphyrins synthesized from 0.6 mM ALA was 47 ± 8 ng/105 cells. The same amount was formed by a concentration 60-fold lower of hexyl-ALA and 2-fold higher of methyl-ALA. The 2-sided derivative failed to produce PPIX accumulation. Applying a 0.6 J cm-2 light dose, cell viability decreased to 50%. With the 1.5 J cm-2 light dose, less than 20% of the cells survive, and higher light doses produced nearly total cell killing. Comparing the PPIX production and the induced phototoxicity, the more the amount of porphyrins, the greater the cellular killing, and PPIX formed from either ALA or ALA-esters equally sensitize the cells to photoinactivation. ALA-PDT treated cells exhibited features of apoptosis, independently on the pro-photosensitizer employed. ALA-PDT can be improved with the use of ALA derivatives, reducing the amount of ALA necessary to induce efficient photosensitization. © 2001 Cancer Research Campaign.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Schaaf, C. - Shan, B. - Buchfelder, M. - Losa, M. - Kreutzer, J. - Rachinger, W. - Stalla, G.K. - Schilling, T. - Arzt, E. - Perone, M.J. - Renner, U.
Endocr.-Relat. Cancer 2009;16(4):1339-1350
2009

Descripción: Curcumin (diferuloylmethane) is the active ingredient of the spice plant Curcuma longa and has been shown to act anti-tumorigenic in different types of tumours. Therefore, we have studied its effect in pituitary tumour cell lines and adenomas. Proliferation of lactosomatotroph GH3 and somatotroph MtT/S rat pituitary cells as well as of corticotroph AtT20 mouse pituitary cells was inhibited by curcumin in monolayer cell culture and in colony formation assay in soft agar. Fluorescence-activated cell sorting (FACS) analysis demonstrated curcumin-induced cell cycle arrest at G2/M. Analysis of cell cycle proteins by immunoblotting showed reduction in cyclin D1, cyclin-dependent kinase 4 and no change in p27kip. FACS analysis with Annexin V-FITC/7-aminoactinomycin D staining demonstrated curcumin-induced early apoptosis after 3, 6, 12 and 24 h treatment and nearly no necrosis. Induction of DNA fragmentation, reduction of Bcl-2 and enhancement of cleaved caspase-3 further confirmed induction of apoptosis by curcumin. Growth of GH3 tumours in athymic nude mice was suppressed by curcumin in vivo. In endocrine pituitary tumour cell lines, GH, ACTH and prolactin production were inhibited by curcumin. Studies in 25 human pituitary adenoma cell cultures have confirmed the antitumorigenic and hormone-suppressive effects of curcumin. Altogether, the results described in this report suggest this natural compound as a good candidate for therapeutic use on pituitary tumours. © 2009 Society for Endocrinology Printed in Great Britain.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Costas, M. - Trapp, T. - Pereda, M.P. - Sauer, J. - Rupprecht, R. - Nahmod, V.E. - Reul, J.M.H.M. - Holsboer, F. - Arzt, E.
J. CLIN. INVEST. 1996;98(6):1409-1416
1996

Descripción: Cytokine-induced glucocorticoid secretion and glucocorticoid inhibition of cytokine synthesis and pleiotropic actions act as important safeguards in preventing cytokine overreaction. We found that TNF-α increased glucocorticoid-induced transcriptional activity of the glucocorticoid receptor (GR) via the glucocorticoid response elements (GRE) in L-929 mouse fibroblasts transfected with a glucocorticoid-inducible reporter plasmid. In addition, TNF-α also enhanced GR number. The TNF-α effect on transcriptional activity was absent in other cell lines that express TNF-α receptors but not GRs, and became manifest when a GR expression vector was cotransfected, indicating that TNF-α, independent of any effect it may have on GR number, has a stimulatory effect on the glucocorticoid-induced transcriptional activity of the GR. Moreover, TNF-α increased GR binding to GRE. As a functional biological correlate of this mechanism, priming of L- 929 cells with a low (noncytotoxic) dose of TNF-α significantly increased the sensitivity to glucocorticoid inhibition of TNF-α-induced cytotoxicity/apoptosis. TNF-α and IL-1β had the same stimulatory action on glucocorticoid-induced transcriptional activity of the GR via the GRE, in different types of cytokine/glucocorticoid target cells (glioma, pituitary, epithelioid). The phenomenon may therefore reflect a general molecular mechanism whereby cytokines modulate the transcriptional activity of the GR, thus potentiating the counterregulation by glucocorticoids at the level of their target cells.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Hauk, V. - Calafat, M. - Larocca, L. - Fraccaroli, L. - Grasso, E. - Ramhorst, R. - Leirós, C.P.
Clin. Exp. Immunol. 2011;166(3):309-316
2011

Descripción: Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by a progressive oral and ocular dryness that correlates poorly with the autoimmune damage of the glands. It has been proposed that a loss of homeostatic equilibrium in the glands is partly responsible for salivary dysfunction with acinar cells involved actively in the pathogenesis of SS. The non-obese diabetic (NOD) mouse model of Sjögren's syndrome develops secretory dysfunction and early loss of glandular homeostatic mechanisms, with mild infiltration of the glands. Based on the vasodilator, prosecretory and trophic effects of the vasoactive intestinal peptide (VIP) on acini as well as its anti-inflammatory properties we hypothesized that the local expression of VIP/vasoactive intestinal peptide receptor (VPAC) system in salivary glands could have a role in acinar cell apoptosis and macrophage function thus influencing gland homeostasis. Here we show a progressive decline of VIP expression in submandibular glands of NOD mice with no changes in VPAC receptor expression compared with normal mice. The deep loss of endogenous VIP was associated with a loss of acinar cells through apoptotic mechanisms that could be induced further by tumour necrosis factor (TNF)-α and reversed by VIP through a cyclic adenosine-5'-monophosphate (cAMP)/protein kinase A (PKA)-mediated pathway. The clearance of apoptotic acinar cells by macrophages was impaired for NOD macrophages but a shift from inflammatory to regulatory phenotype was induced in macrophages during phagocytosis of apoptotic acinar cells. These results support that the decline in endogenous VIP/VPAC local levels might influence the survival/apoptosis intracellular set point in NOD acinar cells and their clearance, thus contributing to gland homeostasis loss. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Romorini, L. - Coso, O.A. - Pecci, A.
Biochim. Biophys. Acta Mol. Cell Res. 2009;1793(3):496-505
2009

Descripción: Apoptosis is the predominant process controlling cell deletion during post-lactational mammary gland remodeling. The members of the Bcl-2 protein family, whose expression levels are under the control of lactogenic hormones, internally control this mechanism. Epidermal growth factor (EGF) belongs to a family of proteins that act as survival factors for mammary epithelial cells upon binding to specific membrane tyrosine kinase receptors. Expression of EGF peaks during lactation and dramatically decreases in the involuting mammary gland. Though it was suggested that the protective effect of EGF is mediated through the phosphatidylinositol-3-kinase (PI3K) or MEK/ERK kinases activities, little is known about the downstream mechanisms involved on the anti-apoptotic effect of EGF on mammary epithelial cells; particularly the identity of target genes controlling apoptosis. Here, we focused on the effect of EGF on the survival of mammary epithelial cells. We particularly aimed at the characterization of the signaling pathways that were triggered by this growth factor, impinge upon expression of Bcl-2 family members and therefore have an impact on the regulation of cell survival. We demonstrate that EGF provokes the induction of the anti-apoptotic isoform Bcl-XL and the phosphorylation and down-regulation of the pro-apoptotic protein Bad. The activation of JNK and PI3K/AKT signaling pathways promotes the induction of Bcl-XL while AKT activation also leads to Bad phosphorylation and down-regulation. This protective effect of EGF correlates mainly with the up-regulation of Bcl-XL than with the down-regulation of Bad. In fact, HC11 cells unable to express bcl-X, die even in the presence of EGF. In this context, Bcl-XL emerges as a key anti-apoptotic molecule critical for mediating EGF cell survival. © 2008 Elsevier B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Rocha-Viegas, L. - Vicent, G.P. - Barañao, J.L. - Beato, M. - Pecci, A.
J. Biol. Chem. 2006;281(45):33959-33970
2006

Descripción: The bcl-X gene plays a critical role in apoptosis. Six different isoforms generated by tissue-specific promoter usage and alternative splicing were described. Some of them exert opposite effects on cell death. In mammary epithelial cells glucocorticoids induce bcl-X expression and increase the ratio bcl-XL (antiapoptotic)/bcl-XS (apoptotic) by activating P4 promoter, which contains two hormone response elements. Here we show that, on mouse thymocytes and T lymphocyte derivative S49 cells, glucocorticoids inhibited transcription from P4 and decreased the ratio bcl-X L/bcl-XS favoring apoptosis. Upon hormonal treatment, glucocorticoid receptor (GR), steroid receptor coactivator-1, and RNA polymerase II were transiently recruited to P4 promoter, whereas STAT5B was also recruited but remained bound. Concomitant with the release of GR, silencing mediator for retinoic acid receptor and thyroid hormone receptor and histone deacetylase 3 were recruited, histone H3 was deacetylated, and RNA polymerase II left the promoter. Inhibition of STAT5 activity reverted glucocorticoid repression to activation of transcription and was accompanied by stable recruitment of GR and RNA polymerase II to P4. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Hoijman, E. - Rocha Viegas, L. - Keller Sarmiento, M.I. - Rosenstein, R.E. - Pecci, A.
Endocrinology 2004;145(1):418-425
2004

Descripción: The antiapoptotic effect of melatonin has been described in several systems. In this study, the antagonistic effect of the methoxyindole on dexamethasone-induced apoptosis in mouse thymocytes was examined. Melatonin decreased both DNA fragmentation, and the number of annexin V-positive cells incubated in the presence of dexamethasone. Analysis of the expression of the members of the Bcl-2 family indicated that the synthetic glucocorticoid increased Bax protein levels without affecting the levels of Bcl-2, Bcl-X L, Bcl-X S, or Bak. This effect correlated with an increase in thymocytes bax mRNA levels. Dexamethasone also increased the release of cytochrome C from mitochondria. All of these effects were reduced in the presence of melatonin, which was ineffective per se on these parameters. In addition, the involvement of cAMP on glucocorticoid/melatonin antagonism was examined. Both melatonin and dexamethasone decreased the levels of this nucleotide in mouse thymocytes, indicating that the antagonistic action between both hormones involves a cAMP-independent pathway. In summary, the present results suggest that the antiapoptotic effect of melatonin on glucocorticoid-treated thymocytes would be a consequence of an inhibition of the mitochondrial pathway, presumably through the regulation of Bax protein levels.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Perone, M.J. - Bertera, S. - Tawadrous, Z.S. - Shufesky, W.J. - Piganelli, J.D. - Baum, L.G. - Trucco, M. - Morelli, A.E.
J. Immunol. 2006;177(8):5278-5289
2006

Descripción: Type 1 diabetes (T1D) is a disease caused by the destruction of the β cells of the pancreas by activated T cells. Dendritic cells (BC) are the APC that initiate the T cell response that triggers T1D. However, DC also participate in T cell tolerance, and genetic engineering of DC to modulate T cell immunity is an area of active research. Galectin-1 (gal-1) is an endogenous lectin with regulatory effects on activated T cells including induction of apoptosis and down-regulation of the Th1 response, characteristics that make gal-1 an ideal transgene to transduce DC to treat T1D. We engineered bone marrow-derived DC to synthesize transgenic gal-1 (gal-1-DC) and tested their potential to prevent T1D through their regulatory effects on activated T cells. NOD-derived gal-1-DC triggered rapid apoptosis of diabetogenic BDC2.5 TCR-transgenic CD4+ T cells by TCR-dependent and -independent mechanisms. Intravenously administered gal-1-DC trafficked to pancreatic lymph nodes and spleen and delayed onset of diabetes and insulitis in the NODrag1 -/- lymphocyte adoptive transfer model. The therapeutic effect of gal-1-DC was accompanied by increased percentage of apoptotic T cells and reduced number of IFN-γ-secreting CD4+ T cells in pancreatic lymph nodes. Treatment with gal-1-DC inhibited proliferation and secretion of IFN-γ of T cells in response to β cell Ag. Unlike other DC-based approaches to modulate T cell immunity, the use of the regulatory properties of gal-1-DC on activated T cells might help to delete β cell-reactive T cells at early stages of the disease when the diabetogenic T cells are already activated. Copyright © 2005 by The American Association of Immunologists, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Peche, L.Y. - Scolz, M. - Ladelfa, M.F. - Monte, M. - Schneider, C.
Cell Death Differ. 2012;19(6):926-936
2012

Descripción: MAGE-A genes are a subfamily of the melanoma antigen genes (MAGEs), whose expression is restricted to tumor cells of different origin and normal tissues of the human germline. Although the specific function of individual MAGE-A proteins is being currently explored, compelling evidence suggest their involvement in the regulation of different pathways during tumor progression. We have previously reported that MageA2 binds histone deacetylase (HDAC)3 and represses p53-dependent apoptosis in response to chemotherapeutic drugs. The promyelocytic leukemia (PML) tumor suppressor is a regulator of p53 acetylation and function in cellular senescence. Here, we demonstrate that MageA2 interferes with p53 acetylation at PML-nuclear bodies (NBs) and with PMLIV-dependent activation of p53. Moreover, a fraction of MageA2 colocalizes with PML-NBs through direct association with PML, and decreases PMLIV sumoylation through an HDAC-dependent mechanism. This reduction in PML post-translational modification promotes defects in PML-NBs formation. Remarkably, we show that in human fibroblasts expressing RasV12 oncogene, MageA2 expression decreases cellular senescence and increases proliferation. These results correlate with a reduction in NBs number and an impaired p53 response. All these data suggest that MageA2, in addition to its anti-apoptotic effect, could have a novel role in the early progression to malignancy by interfering with PML/p53 function, thereby blocking the senescence program, a critical barrier against cell transformation. © 2012 Macmillan Publishers Limited. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Biron, V.A. - Iglesias, M. - Troncoso, M.F. - Besio-Moreno, M. - Patrignani, Z.J. - Pignataro, O.P. - Wolfenstein-Todel, C.
Glycobiology 2006;16(9):810-821
2006

Descripción: Galectin-1 (Gal-1) is a widely expressed β-galactoside-binding protein that exerts pleiotropic biological functions. To gain insight into the potential role of Gal-1 as a novel modulator of Leydig cells, we investigated its effect on the growth and death of MA-10 tumor Leydig cells. In this study, we identified cytoplasmic Gal-1 expression in these tumor cells by cytofluorometry. DNA fragmentation, caspase-3, -8, and -9 activation, loss of mitochondrial membrane potential (ΔΨ m), cytochrome c (Cyt c) release, and FasL expression suggested that relatively high concentrations of exogenously added recombinant Gal-1 (rGal-1) induced apoptosis by the mitochondrial and death receptor pathways. These pathways were independently activated, as the presence of the inhibitor of caspase-8 or -9 only partially prevented Gal-1-effect. On the contrary, low concentrations of Gal-1 significantly promoted cell proliferation, without inducing cell death. Importantly, the presence of the disaccharide lactose prevented Gal-1 effects, suggesting the involvement of the carbohydrate recognition domain (CRD). This study provides strong evidence that Gal-1 is a novel biphasic regulator of Leydig tumor cell number, suggesting a novel role for Gal-1 in the reproductive physiopathology. © Copyright 2006 Oxford University Press.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Bertucci, P.Y. - Quaglino, A. - Pozzi, A.G. - Kordon, E.C. - Pecci, A.
Endocrinology 2010;151(12):5730-5740
2010

Descripción: The mammary epithelium undergoes cyclical periods of cellular proliferation, differentiation, and regression. During lactation, the signal transducer and activator of transcription factor (STAT)-5A and the glucocorticoid receptor (GR) synergize to induce milk protein expression and also act as survival factors. During involution, STAT3 activation mediates epithelial cell apoptosis and mammary gland remodeling. It has been shown that the administration of glucocorticoids at weaning prevents epithelial cell death, probably by extracellular matrix breakdown prevention. Our results show that the synthetic glucocorticoid dexamethasone (DEX) modulates STAT5A and STAT3 signaling and inhibits apoptosis induction in postlactating mouse mammary glands, only when administered within the first 48 h upon cessation of suckling. DEX administration right after weaning delayed STAT5A inactivation and degradation, preserving gene expression of target genes as β-casein (bcas) and prolactin induced protein (pip). Weaning-triggered GR down-regulation is also delayed by the hormone treatment. Moreover, DEX administration delayed STAT3 activation and translocation into epithelial cells nuclei. In particular, DEX treatment impaired the increment in gene expression of signal transducer subunit gp130, normally up-regulated from lactation to involution and responsible for STAT3 activation. Therefore, the data shown herein indicate that glucocorticoids are able to modulate early involution by controlling the strong cross talk that GR, STAT5, and STAT3 pathways maintains in the mammary epithelium. Copyright © 2010 by The Endocrine Society.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

< Anteriores
(Resultados 21 - 37)