por que contenga las palabras

Busqueda avanzada

2 documentos corresponden a la consulta.
Palabras contadas: hamster: 5, chinese: 7
Morita, H. - Zhou, M. - Foecking, M.F. - Gomez-Sanchez, E.P. - Cozza, E.N. - Gomez-Sanchez, C.E.
ENDOCRINOLOGY 1996;137(6):2308-2314
1996

Descripción: The 11β-hydroxysteroid dehydrogenase type 2 (11βHSD-2) enzyme is thought to confer aldosterone specificity upon mineralocorticoid target tissues by protecting the mineralocorticoid receptor from binding by the more abundant glucocorticoids, corticosterone and cortisol. We have developed a Chinese hamster ovary cell line stably transfected with a plasmid containing the rat 11βHSD-2 complementary DNA. This cell line has expressed the enzyme consistently for many generations. The 11βHSD-2 was located primarily in the microsomes, but significant amounts also existed in the nuclei and mitochondria. The enzymatic reaction was unidirectional, oxidative, and inhibited by the product, 11-dehydrocorticosterone, with an IC50 of approximately 200 nM. The K(m) for corticosterone was 9.6 ± 3.1 nM, and that for NAD+ was approximately 8 μM. The enzyme did not convert dexamethasone to 11-dehydrodexamethasone. Tunicamycin, an N-glycosylation inhibitor, had no effect on enzyme activity, 11α-Hydroxyprogesterone (11αOH-P) was an order of magnitude more potent a competitive inhibitor of the 11βHSD-2 than was glycyrrhetinic acid (GA) (approximate IC50 0.9 vs. 15 nM). 11βOH-P, progesterone, and GA were almost equipotent (IC50 = 10 and 6 nM, respectively), and 5α-pregnandione and 5β-pregnandione were less potent (IC50 = 100 and 500 nM, respectively) inhibitors of the enzyme. When the inhibitory activities were examined with intact transfected cells, 11αOH-P was more potent than GA (IC50 = 5 and 150 nM, respectively). 11αOH-P was not metabolized by 11βHSD-2. We were unable to demonstrate the presence of 11αOH-P in human urine. In conclusion, a cell line stably transfected with the rat 11βHSD-2 was created, and the enzyme kinetics, including inhibition, were characterized. 11αOH-P was found to be a potent relatively specific inhibitor of the 11βHSD-2 enzyme. Its potential importance is that it is the most specific inhibitor of the 11βHSD-2 so far encountered and would aid in the study of the physiological importance of the isoenzyme.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Fitzsimons, C.P. - Monczor, F. - Fernández, N. - Shayo, C. - Davio, C.
J. Biol. Chem. 2004;279(33):34431-34439
2004

Descripción: Accurate characterization of the molecular mechanisms of the action of ligands is an extremely important issue for their appropriate research, pharmacological, and therapeutic uses. In view of this fact, the aim of the present work was to investigate the mechanisms involved in the actions of mepyramine at the guinea pig H1 receptor stably expressed in Chinese hamster ovary cells. We found that mepyramine is able to decrease the basal constitutive activity of the guinea pig H1 receptor, to bind with high affinity to a Gq/11 protein-coupled form of the receptor and to promote a G protein-coupled inactive state of the H1 receptor that interferes with the Gq/11-mediated signaling of the endogenously expressed ATP receptor, as predicted by the Cubic Ternary Complex Model of receptor occupancy. The effect of mepyramine on ATP-induced signaling was specifically neutralized by Gα11 overexpression, indicating that mepyramine is able to reduce G protein availability for other non-related receptors associated with the same signaling pathway. Finally, we found a loss of mepyramine efficacy in decreasing basal levels of intracellular calcium at high Gα11 expression levels, which can be theoretically explained in terms of high H1 receptor constitutive activity. The whole of the present work sheds new light on H1 receptor pharmacology and the mechanisms H1 receptor inverse agonists could use to exert their observed negative efficacy.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo