por que contenga las palabras

Busqueda avanzada

4 documentos corresponden a la consulta.
Palabras contadas: sk2: 10, channel: 115
Katz, E. - Elgoyhen, A.B. - Gómez-Casati, M.E. - Knipper, M. - Vetter, D.E. - Fuchs, P.A. - Glowatzki, E.
J. Neurosci. 2004;24(36):7814-7820
2004

Descripción: In the mature cochlea, inner hair cells (IHCs) transduce acoustic signals into receptor potentials, communicating to the brain by synaptic contacts with afferent fibers. Before the onset of hearing, a transient efferent innervation is found on IHCs, mediated by a nicotinic cholinergic receptor that may contain both α9 and α10 subunits. Calcium influx through that receptor activates calcium-dependent (SK2-containing) potassium channels. This inhibitory synapse is thought to disappear after the onset of hearing [after postnatal day 12 (P12)]. We documented this developmental transition using whole-cell recordings from IHCs in apical turns of the rat organ of Corti. Acetylcholine elicited ionic currents in 88-100% of IHCs between P3 and P14, but in only 1 of 11 IHCs at P16-P22. Potassium depolarization of efferent terminals caused IPSCs in 67% of IHCs at P3, in 100% at P7-P9, in 93% at P10-P12, but in only 40% at P13-P14 and in none of the IHCs tested between P16 and P22. Earlier work had shown by in situ hybridization that α9 mRNA is expressed in adult IHCs but that α10 mRNA disappears after the onset of hearing. In the present study, antibodies to α10 and to the associated calcium-dependent (SK2) potassium channel showed a similar developmental loss. The correlated expression of these gene products with functional innervation suggests that Alpha10 and SK2, but not Alpha9, are regulated by synaptic activity. Furthermore, this developmental knock-out of α10, but not α9, supports the hypothesis that functional nicotinic acetylcholine receptors in hair cells are heteromers containing both these subunits.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Taranda, J. - Ballestero, J.A. - Hiel, H. - De Souza, F.S.J. - Wedemeyer, C. - Gómez-Casati, M.E. - Lipovsek, M. - Vetter, D.E. - Fuchs, P.A. - Katz, E. - Elgoyhen, A.B.
JARO J. Assoc. Res. Otolaryngol. 2009;10(3):397-406
2009

Descripción: Efferent inhibition of cochlear hair cells is mediated by α9α10 nicotinic cholinergic receptors (nAChRs) functionally coupled to calcium-activated, small conductance (SK2) potassium channels. Before the onset of hearing, efferent fibers transiently make functional cholinergic synapses with inner hair cells (IHCs). The retraction of these fibers after the onset of hearing correlates with the cessation of transcription of the Chrna10 (but not the Chrna9) gene in IHCs. To further analyze this developmental change, we generated a transgenic mice whose IHCs constitutively express α10 into adulthood by expressing the α10 cDNA under the control of the Pou4f3 gene promoter. In situ hybridization showed that the α10 mRNA is expressed in IHCs of 8-week-old transgenic mice, but not in wild-type mice. Moreover, this mRNA is translated into a functional protein, since IHCs from P8-P10 α10 transgenic mice backcrossed to a Chrna10 -/- background (whose IHCs have no cholinergic function) displayed normal synaptic and acetylcholine (ACh)-evoked currents in patch-clamp recordings. Thus, the α10 transgene restored nAChR function. However, in the α10 transgenic mice, no synaptic or ACh-evoked currents were observed in P16-18 IHCs, indicating developmental down-regulation of functional nAChRs after the onset of hearing, as normally observed in wild-type mice. The lack of functional ACh currents correlated with the lack of SK2 currents. These results indicate that multiple features of the efferent postsynaptic complex to IHCs, in addition to the nAChR subunits, are down-regulated in synchrony after the onset of hearing, leading to lack of responses to ACh. © 2009 Association for Research in Otolaryngology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

De San Martín, J.Z. - Pyott, S. - Ballestero, J. - Katz, E.
J. Neurosci. 2010;30(36):12157-12167
2010

Descripción: In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast, and inhibitory. This efferent synapse is mediated by the nicotinic α9α10 receptor coupled to the activation of SK2 Ca 2+-activated K+ channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown. To identify these channels, we used an isolated mouse cochlear preparation and monitored transmitter release from the efferent synaptic terminals in inner hair cells (IHCs) voltage clamped in the whole-cell recording configuration. Acetylcholine (ACh) release was evoked by electrically stimulating the efferent fibers that make axosomatic contacts with IHCs before the onset of hearing. Using the specific antagonists for P/Q- and N-type voltage-gated calcium channels (VGCCs), ω-agatoxin IVA and ω-conotoxin GVIA, respectively, we show that Ca2+ entering through both types of VGCCs support the release process at this synapse. Interestingly, we found that Ca2+ entering through the dihydropiridine-sensitive L-type VGCCs exerts a negative control on transmitter release. Moreover, using immunostaining techniques combined with electrophysiology and pharmacology, we show that BK Ca2+-activated K+ channels are transiently expressed at the OC efferent terminals contacting IHCs and that their activity modulates the release process at this synapse. The effects of dihydropiridines combined with iberiotoxin, a specific BK channel antagonist, strongly suggest that L-type VGCCs negatively regulate the release of ACh by fueling BK channels that are known to curtail the duration of the terminal action potential in several types of neurons. Copyright © 2010 the authors.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ballestero, J. - de San Martín, J.Z. - Goutman, J. - Elgoyhen, A.B. - Fuchs, P.A. - Katz, E.
J. Neurosci. 2011;31(41):14763-14774
2011

Descripción: In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHC function. How this process is orchestrated at the synaptic level remains unknown. In the present study, MOC firing was evoked by electrical stimulation in an isolated mouse cochlear preparation, while OHCs postsynaptic responses were monitored by whole-cell recordings. These recordings confirmed that electrically evoked IPSCs (eIPSCs) are mediated solely by α9β10 nAChRs functionally coupled to calcium-activated SK2 channels. Synaptic release occurred with low probability when MOC-OHC synapses were stimulated at 1 Hz. However, as the stimulation frequency was raised, the reliability of release increased due to presynaptic facilitation. In addition, the relatively slow decay of eIPSCs gave rise to temporal summation at stimulation frequencies >10 Hz. The combined effect of facilitation and summation resulted in a frequency-dependent increase in the average amplitude of inhibitory currents in OHCs. Thus, we have demonstrated that short-term plasticity is responsible for shaping MOC inhibition and, therefore, encodes the transfer function from efferent firing frequency to the gain of the cochlear amplifier. © 2011 the authors.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo