por que contenga las palabras

Busqueda avanzada

5 documentos corresponden a la consulta.
Palabras contadas: honeybee: 11
Arenas, A. - Ramírez, G.P. - Balbuena, M.S. - Farina, W.M.
Front. Physiol. 2013;4 AUG
2013

Descripción: Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor based on age polyethism. These studies are mainly focused on the role and importance of experiences occurred during the first days of the adult lifespan, their impact on foraging decisions, and their contribution to coordinate food gathering. Odor-rewarded experiences during the first days of honeybee adulthood alter the responsiveness to sucrose, making young hive bees more sensitive to assess gustatory features about the nectar brought back to the hive and affecting the dynamic of the food transfers and the propagation of food-related information within the colony. Early olfactory experiences lead to stable and long-term associative memories that can be successfully recalled after many days, even at foraging ages. Also they improve memorizing of new associative learning events later in life. The establishment of early memories promotes stable reorganization of the olfactory circuits inducing structural and functional changes in the antennal lobe (AL). Early rewarded experiences have relevant consequences at the social level too, biasing dance and trophallaxis partner choice and affecting recruitment. Here, we revised recent results in bees' physiology, behavior, and sociobiology to depict how the early experiences affect their cognition abilities and neural-related circuits. © 2013 Arenas, Ramírez, Balbuena and Farina.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Gil, M. - De Marco, R.J.
J. Exp. Biol. 2005;208(4):671-680
2005

Descripción: Early reports indicate that trophallaxis, i.e. the exchange of liquid food by mouth, may allow honeybees to assign nectar odours with predictive values to anticipate biological meaningful reward stimuli. Nevertheless, this type of learning has not been addressed directly. In the present study, pairs of animals were isolated to induce trophallaxis under controlled conditions and, afterwards, the honeybee proboscis extension reflex was used to investigate the possible role of trophallaxis in learning olfactory cues. The results demonstrate unambiguously that associative learning actually occurs by means of trophallaxis. Animals associate the odour (as the conditioned stimulus or CS) and the sucrose (as the unconditioned stimulus or US) present in the solution they receive through trophallaxis. Moreover, this particular kind of learning leads to long-term olfactory memories after a single learning trial, even when trophallaxis is brief. In addition, we found that the strength of association is clearly affected by CS and US intensity as well as the recent previous foraging experiences of the animals. Comparisons are presented among several features of the learning during trophallaxis and the classical conditioning of the proboscis extension reflex with restrained subjects. Finally, the relevance of learning through trophallaxis in the task of successful foraging is discussed.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ramírez, G.P. - Martínez, A.S. - Fernández, V.M. - Bielsa, G.C. - Farina, W.M.
PLoS ONE 2010;5(10)
2010

Descripción: Background: Honeybees (Apis mellifera) exhibit an extraordinarily tuned division of labor that depends on age polyethism. This adjustment is generally associated with the fact that individuals of different ages display different response thresholds to given stimuli, which determine specific behaviors. For instance, the sucrose-response threshold (SRT) which largely depends on genetic factors may also be affected by the nectar sugar content. However, it remains unknown whether SRTs in workers of different ages and tasks can differ depending on gustatory and olfactory experiences. Methodology: Groups of worker bees reared either in an artificial environment or else in a queen-right colony, were exposed to different reward conditions at different adult ages. Gustatory response scores (GRSs) and odor-memory retrieval were measured in bees that were previously exposed to changes in food characteristics. Principal Findings: Results show that the gustatory responses of pre-foraging-aged bees are affected by changes in sucrose solution concentration and also to the presence of an odor provided it is presented as scented sucrose solution. In contrast no differences in worker responses were observed when presented with odor only in the rearing environment. Fast modulation of GRSs was observed in older bees (12-16 days of age) which are commonly involved in food processing tasks within the hive, while slower modulation times were observed in younger bees (commonly nurse bees, 6-9 days of age). This suggests that older food-processing bees have a higher plasticity when responding to fluctuations in resource information than younger hive bees. Adjustments in the number of trophallaxis events were also found when scented food circulated inside the nest, and this was positively correlated with the differences in timing observed in gustatory responsiveness and memory retention for hive bees of different age classes. Conclusions: This work demonstrates the accessibility of chemosensory information in the honeybee colonies with respect to incoming nectar. The modulation of the sensory-response systems within the hive can have important effects on the dynamics of food transfer and information propagation. © 2010 Ramírez et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Arenas, A. - Fernández, V.M. - Farina, W.M.
PLoS ONE 2009;4(12)
2009

Descripción: Background: Cognitive experiences during the early stages of life play an important role in shaping the future behavior in mammals but also in insects, in which precocious learning can directly modify behaviors later in life depending on both the timing and the rearing environment. However, whether olfactory associative learning acquired early in the adult stage of insects affect memorizing of new learning events has not been studied yet. Methodology: Groups of adult honeybee workers that experienced an odor paired with a sucrose solution 5 to 8 days or 9 to 12 days after emergence were previously exposed to (i) a rewarded experience through the offering of scented food, or (ii) a non-rewarded experience with a pure volatile compound in the rearing environment. Principal Findings: Early rewarded experiences (either at 1-4 or 5-8 days of adult age) enhanced retention performance in 9-12-day-conditioned bees when they were tested at 17 days of age. The highest retention levels at this age, which could not be improved with prior rewarded experiences, were found for memories established at 5-8 days of adult age. Associative memories acquired at 9-12 days of age showed a weak effect on retention for some pure pre-exposed volatile compounds; whereas the sole exposure of an odor at any younger age did not promote long-term effects on learning performance. Conclusions: The associative learning events that occurred a few days after adult emergence improved memorizing in middle-aged bees. In addition, both the timing and the nature of early sensory inputs interact to enhance retention of new learning events acquired later in life, an important matter in the social life of honeybees. © 2009 Arenas et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

De Marco, R.J. - Gurevitz, J.M. - Menzel, R.
J. Exp. Biol. 2008;211(10):1635-1644
2008

Descripción: A honeybee's waggle dance is an intriguing example of multisensory convergence, central processing and symbolic information transfer. It conveys to bees and human observers the position of a relatively small area at the endpoint of an average vector in a two-dimensional system of coordinates. This vector is often computed from a collection of waggle phases from the same or different dancers. The question remains, however, of how informative a small sample of waggle phases can be to the bees, and how the spatial information encoded in the dance is actually mapped to the followers' searches in the field. Certainly, it is the variability of a dancer's performance that initially defines the level of uncertainty that followers must cope with if they were to successfully decode information in the dance. Understanding how a dancer's behaviour is mapped to that of its followers initially relies on the analysis of both the accuracy and precision with which the dancer encodes spatial information in the dance. Here we describe within-individual variations in the encoding of the distance to and direction of a goal. We show that variations in the number of a dancer's wagging movements, a measure that correlates well with the distance to the goal, do not depend upon the dancer's travelled distance, meaning that there is a constant variance of wagging movements around the mean. We also show that the duration of the waggle phases and the angular dispersion and divergence of successive waggle phases co-vary with a dancer's orientation in space. Finally, using data from dances recorded through high-speed video techniques, we present the first analysis of the accuracy and precision with which an increasing number of waggle phases conveys spatial information to a human observer.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo