por que contenga las palabras

Busqueda avanzada

3 documentos corresponden a la consulta.
Palabras contadas: green: 41, fluorescent: 44, enhanced: 55, protein: 1717
da Silva, J.L. - Piuri, M. - Broussard, G. - J. Marinelli, L. - Bastos, G.M. - Hirata, R.D.C. - Hatfull, G.F. - Hirata, M.H.
FEMS Microbiol. Lett. 2013;344(2):166-172
2013

Descripción: Bacteriophage Recombineering of Electroporated DNA (BRED) has been described for construction of gene deletion and point mutations in mycobacteriophages. Using BRED, we inserted a Phsp60-egfp cassette (1143 bp) into the mycobacteriophage D29 genome to construct a new reporter phage, which was used for detection of mycobacterial cells. The cassette was successfully inserted and recombinant mycobacteriophage purified. DNA sequencing of the cassette did not show any mutations even after several phage generations. Mycobacterium smegmatis mc2155 cells were infected with D29::Phsp60-egfp (MOI of 10) and evaluated for EGFP expression by microscopy. Fluorescence was observed at around 2 h after infection, but dissipated in later times because of cell lysis. We attempted to construct a lysis-defective mutant by deleting the lysA gene, although we were unable to purify the mutant to homogeneity even with complementation. These observations demonstrate the ability of BRED to insert c. 1 kbp-sized DNA segments into mycobacteriophage genomes as a strategy for constructing new diagnostic reporter phages. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Franchini, L.F. - López-Leal, R. - Nasif, S. - Beati, P. - Gelman, D.M. - Low, M.J. - De Souza, F.J.S. - Rubinstein, M.
Proc. Natl. Acad. Sci. U. S. A. 2011;108(37):15270-15275
2011

Descripción: The proopiomelanocortin gene (POMC) is expressed in a group of neurons present in the arcuate nucleus of the hypothalamus. Neuron-specific POMC expression in mammals is conveyed by two distal enhancers, named nPE1 and nPE2. Previous transgenic mouse studies showed that nPE1 and nPE2 independently drive reporter gene expression to POMC neurons. Here, we investigated the evolutionary mechanisms that shaped not one but two neuron- specific POMC enhancers and tested whether nPE1 and nPE2 drive identical or complementary spatiotemporal expression patterns. Sequence comparison among representative genomes of most vertebrate classes and mammalian orders showed that nPE1 is a placental novelty. Using in silico paleogenomics we found that nPE1 originated from the exaptation of a mammalian- apparent LTR retrotransposon sometime between the metatherian/ eutherian split (147 Mya) and the placental mammal radiation (≈90 Mya). Thus, the evolutionary origin of nPE1 differs, in kind and time, from that previously demonstrated for nPE2, which was exapted from a CORE-short interspersed nucleotide element (SINE) retroposon before the origin of prototherians, 166 Mya. Transgenic mice expressing the fluorescent markers tomato and EGFP driven by nPE1 or nPE2, respectively, demonstrated coexpression of both reporter genes along the entire arcuate nucleus. The onset of reporter gene expression guided by nPE1 and nPE2 was also identical and coincidental with the onset of Pomc expression in the presumptive mouse diencephalon. Thus, the independent exaptation of two unrelated retroposons into functional analogs regulating neuronal POMC expression constitutes an authentic example of convergent molecular evolution of cell-specific enhancers.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Schor, I.E. - Llères, D. - Risso, G.J. - Pawellek, A. - Ule, J. - Lamond, A.I. - Kornblihtt, A.R.
PLoS ONE 2012;7(11)
2012

Descripción: Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper-acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1α, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper-acetylation decreases recruitment of U2AF65 to bulk 3′ splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ~20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin structure is essential for efficient co-transcriptional recruitment of general and regulatory splicing factors to pre-mRNA. © 2012 Schor et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo