por que contenga las palabras

Busqueda avanzada

43 documentos corresponden a la consulta.
Palabras contadas: phosphorylation: 149
Linero, F.N. - Thomas, M.G. - Boccaccio, G.L. - Scolaro, L.A.
J. Gen. Virol. 2011;92(12):2889-2899
2011

Descripción: Stress granules (SGs) are ephemeral cytoplasmic aggregates containing stalled translation preinitiation complexes involved in mRNA storage and triage during the cellular stress response. SG formation is triggered by the phosphorylation of the alpha subunit of eIF2 (eIF2α), which provokes a dramatic blockage of protein translation. Our results demonstrate that acute infection of Vero cells with the arenavirus Juni{dotless} ́n (JUNV), aetiological agent of Argentine haemorrhagic fever, does not induce the formation of SGs. Moreover, JUNV negatively modulates SG formation in infected cells stressed with arsenite, and this inhibition correlates with low levels of eIF2α phosphorylation. Transient expression of JUNV nucleoprotein (N) or the glycoprotein precursor (GPC), but not of the matrix protein (Z), inhibits SG formation in a similar manner, comparable to infectious virus. Expression of N and GPC also impaired eIF2α phosphorylation triggered by arsenite. A moderate inhibition of SG formation was also observed when DTT and thapsigargin were employed as stress inducers. In contrast, no inhibition was observed when infected cells were treated with hippuristanol, a translational inhibitor and inducer of SGs that bypasses the requirement for eIF2α phosphorylation. Finally, we analysed SG formation in persistently JUNV-infected cells, where N and GPC are virtually absent and truncated N products are expressed abundantly.Wefound that persistently infected cells show a quite normal response to arsenite, with SG formation comparable to that of uninfected cells. This suggests that the presence of GPC and/or N is crucial to control the stress response upon JUNV infection of Vero cells © 2011 SGM.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Marazita, M.C. - Florencia Ogara, M. - Sonzogni, S.V. - Martí, M. - Dusetti, N.J. - Pignataro, O.P. - Cánepa, E.T.
PLoS ONE 2012;7(4)
2012

Descripción: DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, b-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with 32P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage. © 2012 Marazita et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Portela, P. - Howell, S. - Moreno, S. - Rossi, S.
J. Biol. Chem. 2002;277(34):30477-30487
2002

Descripción: Saccharomyces cerevisiae pyruvate kinase 1 (Pyk1) was demonstrated to be associated to an immunoprecipitate of yeast protein kinase A holoenzyme (HA. Tpk1-Bcy1) and to be phosphorylated in a cAMP-dependent process. Both glutathione S-transferase (GST)-Pyk1 and GST-Pyk2 were phosphorylated in vitro by the bovine heart protein kinase A (PKA) catalytic subunit and by immobilized yeast HA-Tpk1. The specificity constant for the phosphorylation of GST-Pyk1 and GST-Pyk2 by bovine catalytic subunit was in the range of the value for Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide). Both fusion proteins were phosphorylated in vivo, in intact cells overexpressing the protein, or in vitro using crude extracts, as source of protein kinase A, when a wild type strain was used but were not phosphorylated when using a strain with only one TPK gene with an attenuated mutation (tpk1w1). The effect of phosphorylation on Pyk activity was assayed in partially purified preparations from three strains, containing different endogenous protein kinase A activity levels. Pyk1 activity was measured at different phosphoenolpyruvate concentrations in the absence or in the presence of the activator fructose 1,6-bisphosphate at 1.5 mM. Preliminary kinetic results derived from the comparison of Pyk1 obtained from extracts with the highest versus those from the lowest protein kinase A activity indicate that the enzyme is more active upon phosphorylation conditions; in the absence of the activator it shows a shift in the titration curve for phosphoenolpyruvate to the left and an increase in the Hill coefficient, whereas in the presence of fructose 1,6-bisphosphate it shows an nH value of 1.4, as compared with an nH of 2 for the Pyk1 obtained from extracts with almost null protein kinase A activity.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Bellozas Reinhard, M.E. - Licastrode, S.A.
Molecules 2000;5(3):602-604
2000

Descripción: New organophosphorus insecticides of dialkylsulphoximines derived with activity upon acetylcholinesterase were synthesized. The obtained compounds were characterized by NMR and IR, and anticholinesterase activity and toxicity was measured. A simulation through computer was done in order to establish the relationship between structure and activity.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Galello, F. - Portela, P. - Moreno, S. - Rossi, S.
J. Biol. Chem. 2010;285(39):29770-29779
2010

Descripción: The specificity in phosphorylation by kinases is determined by the molecular recognition of the peptide target sequence. In Saccharomyces cerevisiae, the protein kinase A (PKA) specificity determinants are less studied than in mammalian PKA. The catalytic turnover numbers of the catalytic subunits isoforms Tpk1 and Tpk2 were determined, and both enzymes are shown to have the same value of 3 s-1. We analyze the substrate behavior and sequence determinants around the phosphorylation site of three protein substrates, Pyk1, Pyk2, and Nth1. Nth1 protein is a better substrate than Pyk1 protein, and both are phosphorylated by either Tpk1 or Tpk2. Both enzymes also have the same selectivity toward the protein substrates and the peptides derived from them. The three substrates contain one or more Arg-Arg-X-Ser consensus motif, but not all of them are phosphorylated. The determinants for specificity were studied using the peptide arrays. Acidic residues in the position P+1 or in the N-terminal flank are deleterious, and positive residues present beyond P-2 and P-3 favor the catalytic reaction. A bulky hydrophobic residue in position P+1 is not critical. The best substrate has in position P+4 an acidic residue, equivalent to the one in the inhibitory sequence of Bcy1, the yeast regulatory subunit of PKA. The substrate effect in the holoenzyme activation was analyzed, and we demonstrate that peptides and protein substrates sensitized the holoenzyme to activation by cAMP in different degrees, depending on their sequences. The results also suggest that protein substrates are better co-activators than peptide substrates. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Salem, T. - Mazzella, A. - Barberini, M.L. - Wengier, D. - Motillo, V. - Parisi, G. - Muschietti, J.
J. Biol. Chem. 2011;286(6):4882-4891
2011

Descripción: The tip-growing pollen tube is a useful model for studying polarized cell growth in plants. We previously characterized LePRK2, a pollen-specific receptor-like kinase from tomato (1). Here, we showed that LePRK2 is present as multiple phosphorylated isoforms in mature pollen membranes. Using comparative sequence analysis and phosphorylation site prediction programs, we identified two putative phosphorylation motifs in the cytoplasmic juxtamembrane (JM) domain. Site-directed mutagenesis in these motifs, followed by transient overexpression in tobacco pollen, showed that both motifs have opposite effects in regulating pollen tube length. Relative to LePRK2-eGFP pollen tubes, alanine substitutions in residues of motif I, Ser277/Ser279/ Ser282, resulted in longer pollen tubes, but alanine substitutions in motif II, Ser304/Ser307/Thr308, resulted in shorter tubes. In contrast, phosphomimicking aspartic substitutions at these residues gave reciprocal results, that is, shorter tubes with mutations in motif I and longer tubes with mutations in motif II. We conclude that the length of pollen tubes can be negatively and positively regulated by phosphorylation of residues in motif I and II respectively. We also showed that LePRK2-eGFP significantly decreased pollen tube length and increased pollen tube tip width, relative to eGFP tubes. The kinase activity of LePRK2 was relevant for this phenotype because tubes that expressed a mutation in a lysine essential for kinase activity showed the same length and width as the eGFP control. Taken together, these results suggest that LePRK2 may have a central role in pollen tube growth through regulation of its own phosphorylation status. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Callero, M.A. - Pérez, G.M. - Vittori, D.C. - Pregi, N. - Nesse, A.B.
Cell. Physiol. Biochem. 2007;20(5):319-328
2007

Descripción: Background/ Aims: Since the reversible phosphorylation of tyrosyl residues is a critical event in cellular signaling pathways activated by erythropoietin (Epo), attention has been focused on protein tyrosine phosphatases (PTPs) and their coordinated action with protein tyrosine kinases. The prototypic member of the PTP family is PTP1B, a widely expressed non-receptor PTP located both in cytosol and intracellular membranes via its hydrophobic C-terminal targeting sequence. PTP1B has been implicated in the regulation of signaling pathways involving tyrosine phosphorylation induced by growth factors, cytokines, and hormones, such as the downregulation of erythropoietin and insulin receptors. However, little is known about which factor modulates the activity of this enzyme. Methods: The effect of Epo on PTP1B expression was studied in the UT-7 Epo-dependent cell line. PTP1B expression was analyzed under different conditions by Real-Time PCR and Western blot, while PTP1B phosphatase activity was determined by a p-nitrophenylphosphate hydrolysis assay. Results: Epo rapidly induced an increased expression of PTP1B which was associated with higher PTP1B tyrosine phosphorylation and phosphatase activity. The action of Epo on PTP1B induction involved Janus Kinase 2 (JAK2) and Phosphatidylinositol-3 kinase (PI3K). Conclusion: The results allow us to suggest for the first time that, besides modulating Epo/Epo receptor signaling, PTP1B undergoes feedback regulation by Epo. Copyright © 2007 S. Karger AG.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Kovalovsky, D. - Refojo, D. - Liberman, A.C. - Hochbaum, D. - Pereda, M.P. - Coso, O.A. - Stalla, G.K. - Holsboer, F. - Arzt, E.
Mol. Endocrinol. 2002;16(7):1638-1651
2002

Descripción: Nur factors are critical for proopiomelanocortin (POMC) induction by CRH in corticotrophs, but the pathways linking CRH to Nur are unknown. In this study we show that in AtT-20 corticotrophs CRH and cAMP induce Nur77 and Nurr1 expression and transcription at the NurRE site by protein kinase A (PKA) and calcium-dependent and -independent mechanisms. Calcium pathways depend on calmodulin kinase II (CAMKII) activity, and calcium-independent pathways are accounted for in part by MAPK activation (Rap1/B-Raf/MAPK-ERK kinase/ERK1/2), demonstrated by the use of molecular and pharmacological tools. ATT-20 corticotrophs express B-Raf, as do other cells in which cAMP stimulates MAPK. CRH/cAMP stimulated ERK2 activity and increased transcriptional activity of a Gal4-Elk1 protein, which was blocked by overexpression of dominant negative mutants and kinase inhibitors and stimulated by expression of B-Raf. The MAPK kinase inhibitors did not affect Nur77 and Nurr1 mRNA induction but blocked CRH or cAMP-stimulated Nur transcriptional activity. Moreover, MAPK stimulated phosphorylation and transactivation of Nur77. The functional impact of these pathways was confirmed at the POMC promoter. In conclusion, in AtT-20 corticotrophs the CRH/cAMP signaling that leads to Nur77/Nurr1 mRNA induction and transcriptional activation, and thus POMC expression, is dependent on protein kinase A and involves calcium/calmodulin kinase II (Nur induction/activation) and MAPK calcium-dependent and -independent (Nur phosphorylation-activation) pathways.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Pérez-Pérez, A. - Julieta Maymo, Y. - Gambino, É. - Dueñas, J.L. - Goberna, R. - Varone, C. - Sánchez-Margalet, V.
Biol. Reprod. 2009;81(5):826-832
2009

Descripción: Leptin was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it may work as an autocrine hormone, mediating angiogenesis, growth, and immunomodulation. Leptin receptor (LEPR, also known as Ob-R) shows sequence homology to members of the class I cytokine receptor (gp130) superfamily. In fact, leptin may function as a proinflammatory cytokine. We have previously found that leptin is a trophic and mitogenic factor for trophoblastic cells. In order to further investigate the mechanism by which leptin stimulates cell growth in JEG-3 cells and trophoblastic cells, we studied the phosphorylation state of different proteins of the initiation stage of translation and the total protein synthesis by [3H]leucine incorporation in JEG-3 cells. We have found that leptin dose-dependently stimulates the phosphorylation and activation of the translation initiation factor EIF4E as well as the phosphorylation of the EIF4E binding protein EIF4EBP1 (PHAS-I), which releases EIF4E to form active complexes. Moreover, leptin dose-dependently stimulates protein synthesis, and this effect can be partially prevented by blocking mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PIK3) pathways. In conclusion, leptin stimulates protein synthesis, at least in part activating the translation machinery, via the activation of MAPK and PIK3 pathways. © 2009 by the Society for the Study of Reproduction, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Balãá, M.E. - Labriola, L. - Salatino, M. - Movsichoff, F. - Peters, G. - Charreau, E.H. - Elizalde, P.V.
Oncogene 2001;20(1):34-47
2001

Descripción: The present study focused on interactions between signaling pathways activated by progestins and by type I and II receptor tyrosine kinases (RTKs) in mammary tumors. An experimental model in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary adenocarcinomas in Balb/c mice was used. MPA-stimulated proliferation, both in vivo and in vitro, of progestin-dependent tumors induced up-regulation of ErbB-2 protein levels and tyrosine phosphorylation of this receptor. Combinations of antisense oligodeoxynueleotides (ASODNs) directed to ErbB-2 mRNA with ASODNs directed to the insulin-like growth factor-I receptor (IGF-IR) were used to study the effect of the simultaneous block of these receptors on the MPA-induced proliferation of epithelial cells from the progestin-dependent C4HD line. Neither synergistic nor additive effects on the inhibition of MPA-induced proliferation of C4HD cells were observed as a result of the combination of these ASODNs. Suppression of IGF-IR expression by ASODNs resulted in complete abrogation of MPA-induced phosphorylation of ErbB-2 in C4HD cells, whereas blockage of ErbB-2 did not affect IGF-IR phosphorylation. These results show the existence of a hierarchical interaction between IGF-IR and ErbB-2, by means of which IGF-IR directs ErbB-2 phosphorylation. We demonstrated, for the first time, that this hierarchical interaction involves physical association of both receptors, resulting in the formation of a heteromeric complex. Furthermore, confocal laser microscopy experiments demonstrated that MPA was able to induce co-localization of ErbB-2 and IGF-IR. This hetero-oligomer was also found in MCF-7 human breast cancer cells in which association of IGF-IR and ErbB-2 was induced by heregulin and IGF-I.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Mascanfroni, I.D. - Montesinos, M.D.M. - Alamino, V.A. - Susperreguy, S. - Nicola, J.P. - Ilarregui, J.M. - Masini-Repiso, A.M. - Rabinovich, G.A. - Pellizas, C.G.
J. Biol. Chem. 2010;285(13):9569-9582
2010

Descripción: Despite considerable progress in our understanding of the interplay between immune and endocrine systems, the role of thyroid hormones and their receptors in the control of adaptive immunity is still uncertain. Here, we investigated the role of thyroid hormone receptor (TR) β 1 signaling in modulating dendritic cell (DC) physiology and the intracellular mechanisms underlying these immunoregulatory effects. Exposure of DCs to triiodothyronine (T 3 ) resulted in a rapid and sustained increase in Akt phosphorylation independently of phosphatidylinositol 3-kinase activation, which was essential for supporting T 3 -induced DC maturation and interleukin (IL)-12 production. This effect was dependent on intact TRβ 1 signaling as small interfering RNA-mediated silencing of TRβ 1 expression prevented T 3 -induced DC maturation and IL-12 secretion as well as Akt activation and IκB-ε degradation. In turn, T 3 up-regulated TRβ 1 expression through mechanisms involving NF-κB, suggesting an autocrine regulatory loop to control hormone-dependent TRβ 1 signaling. These findings were confirmed by chromatin immunoprecipitation analysis, which disclosed a new functional NF-κB consensus site in the promoter region of the TRB1 gene. Thus, a T 3 -induced NF-κB-dependent mechanism controls TRβ 1 expression, which in turn signals DCs to promote maturation and function via an Akt-dependent but PI3K-independent pathway. These results underscore a novel unrecognized target that regulates DC maturation and function with critical implications in immunopathology at the crossroads of the immune-endocrine circuits. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Tanos, T. - Marinissen, M.J. - Leskow, F.C. - Hochbaum, D. - Martinetto, H. - Gutkind, J.S. - Coso, O.A.
J. Biol. Chem. 2005;280(19):18842-18852
2005

Descripción: Exposure to sources of UV radiation, such as sunlight, induces a number of cellular alterations that are highly dependent on its ability to affect gene expression. Among them, the rapid activation of genes coding for two subfamilies of proto-oncoproteins, Fos and Jun, which constitute the AP-1 transcription factor, plays a key role in the subsequent regulation of expression of genes involved in DNA repair, cell proliferation, cell cycle arrest, death by apoptosis, and tissue and extracellular matrix remodeling proteases. Besides being regulated at the transcriptional level, Jun and Fos transcriptional activities are also regulated by phosphorylation as a result of the activation of intracellular signaling cascades. In this regard, the phosphorylation of c-Jun by UV-induced JNK has been readily documented, whereas a role for Fos proteins in UV-mediated responses and the identification of Fos-activating kinases has remained elusive. Here we identify p38 MAPKs as proteins that can associate with c-Fos and phosphorylate its transactivation domain both in vitro and in vivo. This phosphorylation is transduced into changes in its transcriptional ability as p38-activated c-Fos enhances AP1-driven gene expression. Our findings indicate that as a consequence of the activation of stress pathways induced by UV light, endogenous c-Fos becomes a substrate of p38 MAPKs and, for the first time, provide evidence that support a critical role for p38 MAPKs in mediating stress-induced c-Fos phosphorylation and gene transcription activation. Using a specific pharmacological inhibitor for p38α and -β, we found that most likely these two isoforms mediate UV-induced c-Fos phosphorylation in vivo. Thus, these newly described pathways act concomitantly with the activation of c-Jun by JNK/MAPKs, thereby contributing to the complexity of AP1-driven gene transcription regulation.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Wengier, D.L. - Mazzella, M.A. - Salem, T.M. - McCormick, S. - Muschietti, J.P.
BMC Plant Biol. 2010;10
2010

Descripción: Background: LePRK1 and LePRK2 are two pollen receptor kinases localized to the plasma membrane, where they are present in a high molecular weight complex (LePRK complex). LePRK2 is phosphorylated in mature and germinated pollen, but is dephosphorylated when pollen membranes are incubated with tomato or tobacco style extracts.Results: Here we show that LePRK2 dephosphorylation is mediated by a heat-, acid-, base-, DTT- and protease-resistant component from tobacco styles. Using LePRK2 phosphorylation as a tracking assay for purification, style exudates were subjected to chloroform extraction, anionic exchange, and C18 reverse-phase chromatography columns. We finally obtained a single ~3,550 Da compound (as determined by UV-MALDI-TOF MS) that we named STIL (for Style Interactor for LePRKs). STIL increased pollen tube lengths of in vitro germinated pollen in a dose-dependent manner.Conclusion: We propose that the LePRK complex perceives STIL, resulting in LePRK2 dephosphorylation and an increase in pollen tube growth. © 2010 Wengier et al; licensee BioMed Central Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Quaglino, A. - Salierno, M. - Pellegrotti, J. - Rubinstein, N. - Kordon, E.C.
BMC Cell Biol. 2009;10
2009

Descripción: Background: Shortly after weaning, a complex multi-step process that leads to massive epithelial apoptosis is triggered by tissue local factors in the mouse mammary gland. Several reports have demonstrated the relevance of mechanical stress to induce adaptive responses in different cell types. Interestingly, these signaling pathways also participate in mammary gland involution. Then, it has been suggested that cell stretching caused by milk accumulation after weaning might be the first stimulus that initiates the complete remodeling of the mammary gland. However, no previous report has demonstrated the impact of mechanical stress on mammary cell physiology. To address this issue, we have designed a new practical device that allowed us to evaluate the effects of radial stretching on mammary epithelial cells in culture. Results: We have designed and built a new device to analyze the biological consequences of applying mechanical stress to cells cultured on flexible silicone membranes. Subsequently, a geometrical model that predicted the percentage of radial strain applied to the elastic substrate was developed. By microscopic image analysis, the adjustment of these calculations to the actual strain exerted on the attached cells was verified. The studies described herein were all performed in the HC11 non-tumorigenic mammary epithelial cell line, which was originated from a pregnant BALB/c mouse. In these cells, as previously observed in other tissue types, mechanical stress induced ERK1/2 phosphorylation and c-Fos mRNA and protein expression. In addition, we found that mammary cell stretching triggered involution associated cellular events as Leukemia Inhibitory Factor (LIF) expression induction, STAT3 activation and AKT phosphorylation inhibition. Conclusion: Here, we show for the first time, that mechanical strain is able to induce weaning-associated events in cultured mammary epithelial cells. These results were obtained using a new practical and affordable device specifically designed for such a purpose. We believe that our results indicate the relevance of mechanical stress among the early post-lactation events that lead to mammary gland involution. © 2009 Quaglino et al., licensee BioMed Central Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Romorini, L. - Coso, O.A. - Pecci, A.
Biochim. Biophys. Acta Mol. Cell Res. 2009;1793(3):496-505
2009

Descripción: Apoptosis is the predominant process controlling cell deletion during post-lactational mammary gland remodeling. The members of the Bcl-2 protein family, whose expression levels are under the control of lactogenic hormones, internally control this mechanism. Epidermal growth factor (EGF) belongs to a family of proteins that act as survival factors for mammary epithelial cells upon binding to specific membrane tyrosine kinase receptors. Expression of EGF peaks during lactation and dramatically decreases in the involuting mammary gland. Though it was suggested that the protective effect of EGF is mediated through the phosphatidylinositol-3-kinase (PI3K) or MEK/ERK kinases activities, little is known about the downstream mechanisms involved on the anti-apoptotic effect of EGF on mammary epithelial cells; particularly the identity of target genes controlling apoptosis. Here, we focused on the effect of EGF on the survival of mammary epithelial cells. We particularly aimed at the characterization of the signaling pathways that were triggered by this growth factor, impinge upon expression of Bcl-2 family members and therefore have an impact on the regulation of cell survival. We demonstrate that EGF provokes the induction of the anti-apoptotic isoform Bcl-XL and the phosphorylation and down-regulation of the pro-apoptotic protein Bad. The activation of JNK and PI3K/AKT signaling pathways promotes the induction of Bcl-XL while AKT activation also leads to Bad phosphorylation and down-regulation. This protective effect of EGF correlates mainly with the up-regulation of Bcl-XL than with the down-regulation of Bad. In fact, HC11 cells unable to express bcl-X, die even in the presence of EGF. In this context, Bcl-XL emerges as a key anti-apoptotic molecule critical for mediating EGF cell survival. © 2008 Elsevier B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Alaniz, L. - García, M.G. - Gallo-Rodriguez, C. - Agusti, R. - Sterín-Speziale, N. - Hajos, S.E. - Alvarez, E.
Glycobiology 2006;16(5):359-367
2006

Descripción: Several studies indicate that hyaluronan oligosaccharides (oHA) are able to modulate growth and cell survival in solid tumors; however, no studies have been undertaken to analyze the effect of oHA on T-lymphoid disorders. In this work we showed that oHA were able to induce apoptosis in lymphoma cell lines. Since PI3-K/Akt and nuclear factor-κB (NF-κB) are major factors involved in cell survival and anti-apoptotic pathways in lymphoma cells, we hypothesized that oHA could induce apoptosis through inhibition of these pathways. oHA were identified by a method which allows characterization of length using a high pH anion exchange chromatography with pulse amperometric detection (HPAEC-PAD). oHA inhibited PIP3 production (principal product of PI3-K activity) and reduced Akt phosphorylation levels, similarly to the specific inhibitor wortmannin. However, treatment with either oHA or wortmannin failed to inhibit constitutive NF-κB activity and modulate IκBα protein levels, suggesting that PI3-K and NF-κB signaling pathways are not related in the cell lines used. Cell behavior differed using native hyaluronan (HA), which induced PIP3 production, Akt phosphorylation, and NF-κB activation, although not related with cell survival since treatment with native HA showed no effect on apoptosis. Our results suggest that oHA induce apoptosis by suppression of PI3-K/Akt cell survival pathway without involving NF-κB activation, through a mechanism that differs from the one mediated by native HA. © 2006 Oxford University Press.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Lohrer, P. - Gloddek, J. - Carbia Nagashima, A. - Korali, Z. - Hopfner, U. - Paez Pereda, M. - Arzt, E. - Stalla, G.K. - Renner, U.
Endocrinology 2000;141(12):4457-4465
2000

Descripción: Bacterial lipopolysaccharide (LPS) activates the immune system and induces increases in peripheral cytokines, which, in turn, affect the endocrine system. In particular, LPS-induced cytokines stimulate the hypothalamic-pituitary-adrenal axis to increase levels of antiinflammatory-acting glucocorticoids. In the present work, we show that LPS directly stimulates interleukin (IL)-6 release by mouse pituitary folliculostellate (FS) TtT/GF tumor cells and FS cells of mouse pituitary cell cultures. The stimulatory effect of LPS was strongly enhanced in the presence of serum, suggesting that LPS is only fully active as a complex with LPS-binding protein (LBP). Both TtT/GF cells and mouse pituitaries expressed CD14, which binds the LPS/LBP complex, and Toll-like receptor type 4, which induces LPS signals. LPS increased phospoinositol turnover in TtT/GF cells and induced phosphorylation of p38α mitogen-activated protein kinase and the inhibitor (IκB) of nuclear factor-κ B. Nuclear factor-κ B was activated by LPS in TtT/GF cells. Functional studies demonstrated that My4 (an antibody blocking the interaction between LPS/LBP and CD14), SB203580, (a specific inhibitor of p38α mitogen-activated protein kinase phosphorylation), dexamethasone, and the messenger RNA translation inhibitor cycloheximide all inhibited LPS-induced IL-6 production by TtT/GF cells and mouse pituitary FS cells. LPS-induced intrapituitary IL-6 may modulate the function of anterior pituitary cells during bacterial infection/inflammation.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Maymó, J.L. - Pérez, A.P. - Dueñas, J.L. - Calvo, J.C. - Sánchez-Margalet, V. - Varone, C.L.
Endocrinology 2010;151(8):3738-3751
2010

Descripción: Leptin, a 16-kDa protein mainly produced by adipose tissue, has been involved in the control of energy balance through its hypothalamic receptor. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it was found to be expressed. In the current study, we examined the effect of cAMP in the regulation of leptin expression in trophoblastic cells. We found that dibutyryl cAMP [(Bu) 2cAMP], a cAMP analog, showed an inducing effect on endogenous leptin expression in BeWo and JEG-3 cell lines when analyzed by Western blot analysis and quantitative RT-PCR. Maximal effect was achieved at 100 μM. Leptin promoter activity was also stimulated, evaluated by transient transfection with a reporter plasmid construction. Similar results were obtained with human term placental explants, thus indicating physiological relevance. Because cAMP usually exerts its actions through activation of protein kinase A (PKA) signaling, this pathway was analyzed. We found that cAMP response element-binding protein (CREB) phosphorylation was significantly increased with (Bu)2cAMP treatment. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor CREB caused a significant stimulation on leptin promoter activity. On the other hand, the cotransfection with a dominant negative mutant of the regulatory subunit of PKA inhibited leptin promoter activity. We determined that cAMP effect could be blocked by pharmacologic inhibition of PKA or adenylyl ciclase in BeWo cells and in human placental explants. Thereafter, we decided to investigate the involvement of the MAPK/ERK signaling pathway in the cAMP effect on leptin induction. We found that 50 μM PD98059, a MAPK kinase inhibitor, partially blocked leptin induction by cAMP, measured both by Western blot analysis and reporter transient transfection assay. Moreover, ERK 1/2 phosphorylation was significantly increased with (Bu)2cAMP treatment, and this effect was dose dependent. Finally, we observed that 50 μM PD98059 inhibited cAMP-dependent phosphorylation of CREB in placental explants. In summary, we provide some evidence suggesting that cAMP induces leptin expression in placental cells and that this effect seems to be mediated by a cross talk between PKA and MAPK signaling pathways. Copyright © 2010 by The Endocrine Society.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Cramer, P. - Srebrow, A. - Kadener, S. - Werbajh, S. - De La Mata, M. - Melen, G. - Nogués, G. - Kornblihtt, A.R.
FEBS Lett. 2001;498(2-3):179-182
2001

Descripción: A large body of work has proved that transcription by RNA polymerase II and pre-mRNA processing are coordinated events within the cell nucleus. Capping, splicing and polyadenylation occur while transcription proceeds, suggesting that RNA polymerase II plays a role in the regulation of these events. The presence and degree of phosphorylation of the carboxy-terminal domain of RNA polymerase II large subunit is important for functioning of the capping enzymes, the assembly of spliceosomes and the binding of the cleavage/polyadenylation complex. Nuclear architecture and gene promoter structure have also been shown to play key roles in coupling between transcription and splicing. © 2001 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

< Anteriores
(Resultados 21 - 40)