por que contenga las palabras

Busqueda avanzada

2 documentos corresponden a la consulta.
Palabras contadas: uniform: 34, layer: 68
Perazzo, C.A. - Gratton, J.
J. Phys. Conf. Ser. 2009;166
2009

Descripción: We investigate the evolution of the ridge produced by the non-symmetrical convergent motion of two substrates over which an initially uniform layer of a Newtonian liquid rests. The lack of symmetry of the flow arises because the substrates move with different velocities. We focus on the self-similar regimes that occur in this process. For short times, within the linear regime, the height and the width increase as t1/2 and the profile is symmetric, independently of degree of asymmetry of the motion of the substrates. In the self-similar regime for large time, the height and the width of the ridge follow the same power laws as in the symmetric case, but the profiles are asymmetric. © 2009 IOP Publishing Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/documento de conferencia

Perazzo, C.A. - Gratton, J.
Phys. Fluids 2008;20(4)
2008

Descripción: We numerically and theoretically investigate the evolution of the ridges and rifts produced by the convergent and divergent motions of two substrates over which an initially uniform layer of a Newtonian liquid rests. We put particular emphasis on the various asymptotic self-similar and quasi-self-similar regimes that occur in these processes. During the growth of a ridge, two self-similar stages occur; the first takes place in the initial linear phase, and the second is obtained for a large time. Initially, the width and the height of the ridge increase as t 1/2. For a very large time, the width grows as t 3/4, while the height increases as t 1/4. On the other hand, in the process of formation of a rift, there are three self-similar asymptotics. The initial linear phase is similar to that for ridges. The second stage corresponds to the separation of the current in two parts, leaving a dry region in between. Last, for a very large t, each of the two parts in which the current has separated approaches the self-similar viscous dam break solution. © 2008 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo