por que contenga las palabras

Busqueda avanzada

9 documentos corresponden a la consulta.
Palabras contadas: circulation: 31, atmospheric: 70
Compagnucci, R.H.
Biol. J. Linn. Soc. 2011;103(2):229-249
2011

Descripción: This paper discusses the general atmospheric circulation over Patagonia on the basis of the principal palaeoclimate forcings: continental drift, orography, variations in the greenhouse gases in the Earth's atmosphere, evolution of the atmosphere and the oceans, changes in the orbit of the Earth, albedo feedbacks, and the land surface. These processes affect climate on time scales of millions to hundreds of thousands of years. Additionally, orbital forcing has had a major influence on climate during the Quaternary. The palaeo-atmospheric circulation of Patagonia is analyzed for the Early to Late Jurassic, the Cretaceous, the Late Palaeocene-Eocene Thermal Maximum, the Tortonian-Oligocene cooling, the Pliocene, the Quaternary including the Last Glacial Maximum, the Holocene Optimum, and the last millennium changes. Alternative palaeo-atmospheric circulations from climatic modelling scenarios through the ages are reviewed and compared with proxy data. Detailed and updated reference information on the topics analyzed is also provided. © 2011 The Linnean Society of London.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Blázquez, J. - Nuñez, M.N.
Int. J. Climatol. 2013;33(4):904-919
2013

Descripción: This paper evaluates a present climate simulation over southern South America performed with the Meteorological Research Institute/Japanese Meteorological Agency (MRI/JMA) high resolution global model. Main patterns of low and upper-level atmospheric circulation were analysed in a 25-year simulation as well as climate means, interannual variability, trends and bias of temperature and precipitation. The model is able to reproduce the main atmospheric circulation patterns and mean surface variables, although some deficiencies were found such as an overestimation of temperature over central Argentina in most of seasons, an overestimation of austral winter precipitation over northeastern and central Argentina, an underestimation of precipitation in all the seasons over southeast of Brazil, an underestimation of the amplitude of the annual cycle temperature in some regions and an overestimation of the amplitude of the annual cycle of precipitation over mountainous areas. Model interannual variability was also assessed. In general, temperature variability is overestimated, whereas precipitation is underestimated. The spatial structure of the year-to-year variability of precipitation is correctly simulated by the model, although some patterns were misplaced. Most of regions present a cold seasonal bias reaching values of - 2 °C in some regions. It was found that precipitation biases are between 3 and - 1 mm day-1. In some regions and seasons observed and simulated temperature trends coincide, as in austral summer or spring, where the model and the observations show positive trends in most of regions. However, there is no agreement between observed and simulated precipitation trends in almost all the regions and seasons. © 2012 Royal Meteorological Society.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Rusticucci, M.M. - Venegas, S.A. - Vargas, W.M.
J. Geophys. Res. C Oceans 2003;108(11):20-1
2003

Descripción: A Singular Value Decomposition (SVD) analysis was performed jointly on extreme temperature events in Argentina and sea surface temperature (SST) in the South Atlantic and South Pacific. Sea level pressure (SLP) patterns associated with the first SVD coupled mode were also analyzed. Winter is the season of the year that is best represented by the first mode, accounting for up to 70% of the winter covariance between temperature events and SST. The warm and cold events in Argentina are essentially a consequence of the creation of meridional atmospheric circulations over the continent. Such atmospheric patterns result from displacements and intensity changes of the subtropical anticyclones over the oceans and of the continental low-pressure center in northwestern Argentina. The temperature events in southern Argentina are also closely related to the warming and cooling of the coastal waters in the South Atlantic and South Pacific. The analysis suggests that in summer and winter, high (low) occurrence of warm events and low (high) occurrence of cold events are related to similar oceanic and atmospheric circulation situations. The temperature events in Argentina show higher correlation with the Atlantic than with the Pacific, which reflects the importance of the "orographic barrier" of the Andes Mountains in driving the atmospheric circulation. The only exception to this rule concerns the warm events in spring, for which the warming of the equatorial Pacific (the ENSO pattern) appears as the dominant mode. The temporal patterns of the temperature events in Argentina exhibit significant interannual variability in fall, winter, and spring, with periods of 3 to 5 years. The summer patterns suggest a very low-frequency variation with a period longer than 20 years. Copyright 2003 by the American Geophysical Union.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Barrucand, M. - Rusticucci, M. - Vargas, W.
J. Geophys. Res. D Atmos. 2008;113(20)
2008

Descripción: The objective of this research is to study the main variability modes of the frequency of extreme temperatures in the south of South Amenica, their relation to sea surface temperatures (SSTs), and some indices of atmospheric circulation in the Southern Hemisphere. Observational data and reanalysis data were used for this purpose over the 1964-2003 period. An initial analysis showed that between the months of March and June, the frequency of wann events (especially warm nights) is highly associated with the SST in coastal zones. A wavelet analysis showed that the main variability mode found at a seasonal scale was an 8-year wave signal present in spning that remains active until the 1990s; it was noticeable in the analysis of cold nights, Atlantic SSTs, Pacific SSTs, and the Southern Annular Mode (SAM). A cross-wavelet analysis among them reflected this signal as a common variability mode, with the positive phase of the SAM congruent with the warmest conditions in the coastal zones of the Atlantic Ocean and lower cases with cold nights at the reference meteorological stations analyzed. Although longer series are desirable for low-frequency variability analysis, the results agree with previous studies that take into account an 8-year periodicity of the baroclinic waves at the Southern Hemisphere, supporting the relevance of the 8-year signal. Copyright 2008 by the American Geophysical Union.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Nicolini, M. - Salio, P. - Katzfey, J.J. - McGregor, J.L. - Saulo, A.C.
J. Geophys. Res. D Atmos. 2002;107(22):XXXIII-XXXIV
2002

Descripción: This work presents results, over the South American region, from the CSIRO Division of Atmospheric Research limited area model (DARLAM) and from the ninelevel general circulation model (GCM) of CSIRO (CSIRO Mk 2), within which it was nested in a one-way mode. Ten separate 30-day DARLAM simulations were performed for both January and July with a resolution of 125 km and were averaged to obtain a climatology for those months. This paper presents for the first time simulations of the January South American climate using a limited area model; previous similar studies simulated only the July climate. The goal of this study was to examine the capability of the CSIRO Mk 2 - DARLAM nested modeling system for simulating the climate in the South American region. Further, it was desired to investigate whether the higher resolution of DARLAM improves the simulated climate over various subregions, compared with the GCM and observations. With this purpose, a representative set of variables was analyzed and statistically compared. Overall, the fields simulated by the nesting system provide a better representation of the South American climate than the GCM. In particular, significant improvements are found in the nested model climatology for near-surface temperature and mean sea level pressure. Comparison of the January and July simulations shows a better wintertime performance. Some significant summertime features, like the Bolivian High, are reasonably well simulated by DARLAM, but not by the GCM. Copyright 2002 by the American Geophysical Union.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Antico, P.L.
Int. J. Climatol. 2009;29(5):719-727
2009

Descripción: The classification of El Niño events was performed based on the time evolution of sea surface warming in the tropical Pacific Ocean during the period 1950-2000. Two sets of events were constructed: one in which the warming core migrates eastward along the tropical Pacific until April-June of the following year, and another one in which it evolves westward until November-January. The first type has associated positive precipitation anomalies over southeastern South America during April-June. It results from a favourable combination of cyclonic vorticity advection and humidity convergence. At high levels, cyclonic vorticity advection is explained in terms of an eastward extension of the subtropical jet. Enhanced humidity advection takes place by an increased low-level northwesterly flow to the east of the Andes. It provides enough moisture availability that, in combination with the upper-level cyclonic vorticity advection, supports heavy precipitation during April-June. The second type of event exhibits slight negative or near-normal precipitation anomalies over the same region. Both low and high-level circulation anomalies are also weaker in this case. The 1997-1998 El Niño is analysed separately because it cannot be classified into any of the previously described event types. The observed distribution of both types of events along the analysed period changes after the 1970s. Comparison with other authors' results suggests the influence of low-frequency processes such as the Pacific Decadal Oscillation (PDO). Copyright © 2008 Royal Meteorological Society.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Compagnucci, R.H. - Araneo, D. - Canziani, P.O.
Int. J. Climatol. 2001;21(2):197-217
2001

Descripción: A new eigentechnique approach, Principal Sequence Pattern Analysis (PSPA), is introduced for the analysis of spatial pattern sequence, as an extension of the traditional Principal Component Analysis set in the T-Mode. In this setting, the variables are sequences of k spatial fields of a given meteorological variable. PSPA is described and applied to a sample of 256 consecutive daily 1000 hPa geopotential height fields. The results of the application of the technique to 5-day sequences demonstrate the advantages of this procedure in identifying field pattern sequences, thereby allowing the determination of the evolution and development of the systems, together with cyclogenesis and anticyclogenesis processes. In order to complete the study, the more traditional Extended Empirical Orthogonal Function (EEOF) analysis, which is the S-mode equivalent of the PSPA, was applied to the same dataset. For EEOF, it was not possible to identify any real sequences that could correspond to the sequences of patterns yielded by the EEOF. Furthermore, the explained variance distribution in the EEOF was significantly different from that obtained with PSPA. Conversely, the PSPA approach allowed for the identification of the sequences corresponding to those sequences observed in the data. Using diagrams of the squares of the component loadings values, as a function of time, the study of the times of occurrence of dominant field characteristics was also possible. In other words, successful determination of periods where the basic flow was dominant and times when strongly perturbed transient events with a significant meridional component occurred, was facilitated by PSPA. © 2001 Royal Meteorological Society.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Solman, S.A. - Nuñez, M.N.
Int. J. Climatol. 1999;19(8):835-861
1999

Descripción: For the purposes of estimating local changes in surface climate at selected stations in the central Argentina region, induced by an enhanced CO2 concentration, projected by general circulation models (GCM), a statistical method to derive local scale monthly mean minimum, maximum and mean temperatures from large-scale atmospheric predictors is presented. Empirical relationships are derived among selected variables from the NCEP re-analyses and local data for summer and winter months, tested against an independent set of observed data and subsequently applied to the HADAM and MPI GCM control runs. Finally, the statistical approach is applied to a climate change experiment performed with the MPI model to construct a local climate change scenario. The comparison between the estimated versus the observed mean temperature ffields shows good agreement and the temporal evolution of the estimated variables is well-captured, though, the estimated temperatures contain less interannual variability than the observations. For the present day climate simulation, the results from the HADAM and MPI GCMs are used. It is shown that the pattern of estimated temperatures obtained using the MPI large-scale predictors matches the observations for summer months, though minimum and mean temperatures are slightly underestimated in the southeast part of the domain. However, the differences are well within the range of the observed variability. The possible anthropogenic climate change at the local scale is assessed by applying the statistical method to the results of the perturbed run conducted with the MPI model. For summer and winter months, the local temperature increase is smaller for minimum temperature than for maximum temperature for almost all the stations, yielding an enhanced temperature amplitude in both seasons. The temperature amplitude (difference between maximum and minimum) for summer months was larger than for winter months. The estimated maximum temperature increase is found to be larger for summer months than for winter months for all the stations, while for the minimum, temperature increases for summer and winter months are similar.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Nicolini, M. - Salio, P. - Katzfey, J.J. - McGregor, J.L. - Saulo, A.C.
J. Geophys. Res. D Atmos. 2002;107(22):12-1-12-13
2002

Descripción: [i] This work presents results, over the South American region, from the CSIRO Division of Atmospheric Research limited area model (DARLAM) and from the ninelevel general circulation model (GCM) of CSIRO (CSIRO Mk 2), within which it was nested in a one-way mode. Ten separate 30-day DARLAM simulations were performed for both January and July with a resolution of 125 km and were averaged to obtain a climatology for those months. This paper presents for the first time simulations of the January South American climate using a limited area model; previous similar studies simulated only the July climate. The goal of this study was to examine the capability of the CSIRO Mk 2 - DARLAM nested modeling system for simulating the climate in the South American region. Further, it was desired to investigate whether the higher resolution of DARLAM improves the simulated climate over various subregions, compared with the GCM and observations. With this purpose, a representative set of variables was analyzed and statistically compared. Overall, the fields simulated by the nesting system provide a better representation of the South American climate than the GCM. In particular, significant improvements are found in the nested model climatology for near-surface temperature and mean sea level pressure. Comparison of the January and July simulations shows a better wintertime performance. Some significant summertime features, like the Bolivian High, are reasonably well simulated by DARLAM, but not by the GCM. Copyright 2002 by the American Geophysical Union.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo