por que contenga las palabras

Busqueda avanzada

4 documentos corresponden a la consulta.
Palabras contadas: confined: 20, water: 314
Disalvo, E.A. - Lairion, F. - Martini, F. - Almaleck, H. - Diaz, S. - Gordillo, G.
- 2004;92(4-6):1-22
2004

Descripción: The purpose of this review is to examine and discuss the ways in which water is organized at the interface of a biological membrane. The relevance of this structure to the surface properties and to the adsorption of proteins in membranes is also analized. The approach is based on the idea that cell functions are confined to a restricted water media, the cell interior, in which the proximity of the membrane may be key to regulating the enzyme activity and the cell membrane permeability. As the lipid bilayer is the structural base of cell membranes, the distribution of water in the surface sites of a phospholipid membrane is analyzed by means of Fourier Transform spectrometry. The polarization of water at the surface was looked into through the measure of surface potentials and the dynamics of the surface hydration by cyclic voltammetry. Modification of these properties by the replacement of water by polyol molecules such as trehalose and phloretin and by the insertion of aqueous soluble enzymes, has also been investigated.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

De La Llave, E. - Molinero, V. - Scherlis, D.A.
J Chem Phys 2010;133(3)
2010

Descripción: Molecular dynamics simulations of water in cylindrical hydrophilic pores with diameters of 1.5 and 3 nm were performed to explore the phase behavior and the nucleation dynamics of the confined fluid as a function of the percentage of volume filled f. The interactions of water with the pore wall were considered to be identical to the interactions between water molecules. At low water contents, all the water is adsorbed to the surface of the pore. A second phase consisting of a liquid plug appears at the onset filling for capillary condensation, fonset =27% and 34% for the narrow and wide pores, respectively. In agreement with experimental results for silica pores, the liquid phase appears close to the equilibrium filling feq in the 1.5 nm pore and under conditions of strong surface supersaturations for the 3 nm pore. After condensation, two phases, a liquid plug and a surface-adsorbed phase, coexist in equilibrium. Under conditions of phase coexistence, the water surface density Tcoex was found to be independent of the water content and the diameter of the pore. The value of Tcoex found in the simulations (∼3 nm-2) is in good agreement with experimental results for silica pores, suggesting that the interactions of water with silica and with itself are comparable. The surface-adsorbed phase at coexistence is a sparse monolayer with a structure dominated by small water clusters. We characterize the density and structure of the liquid and surface phases, the nucleation mechanism of the water plug, and the effect of surface hydrophilicity on the two-phase equilibrium and hysteresis. The results are discussed in light of experiments and previous simulations. © 2010 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Disalvo, E.A. - Lairion, F. - Martini, F. - Tymczyszyn, E. - Frías, M. - Almaleck, H. - Gordillo, G.J.
Biochim. Biophys. Acta Biomembr. 2008;1778(12):2655-2670
2008

Descripción: The scope of the present review focuses on the interfacial properties of cell membranes that may establish a link between the membrane and the cytosolic components. We present evidences that the current view of the membrane as a barrier of permeability that contains an aqueous solution of macromolecules may be replaced by one in which the membrane plays a structural and functional role. Although this idea has been previously suggested, the present is the first systematic work that puts into relevance the relation water-membrane in terms of thermodynamic and structural properties of the interphases that cannot be ignored in the understanding of cell function. To pursue this aim, we introduce a new definition of interphase, in which the water is organized in different levels on the surface with different binding energies. Altogether determines the surface free energy necessary for the structural response to changes in the surrounding media. The physical chemical properties of this region are interpreted in terms of hydration water and confined water, which explain the interaction with proteins and could affect the modulation of enzyme activity. Information provided by several methodologies indicates that the organization of the hydration states is not restricted to the membrane plane albeit to a region extending into the cytoplasm, in which polar head groups play a relevant role. In addition, dynamic properties studied by cyclic voltammetry allow one to deduce the energetics of the conformational changes of the lipid head group in relation to the head-head interactions due to the presence of carbonyls and phosphates at the interphase. These groups are, apparently, surrounded by more than one layer of water molecules: a tightly bound shell, that mostly contributes to the dipole potential, and a second one that may be displaced by proteins and osmotic stress. Hydration water around carbonyl and phosphate groups may change by the presence of polyhydroxylated compounds or by changing the chemical groups esterified to the phosphates, mainly choline, ethanolamine or glycerol. Thus, surface membrane properties, such as the dipole potential and the surface pressure, are modulated by the water at the interphase region by changing the structure of the membrane components. An understanding of the properties of the structural water located at the hydration sites and the functional water confined around the polar head groups modulated by the hydrocarbon chains is helpful to interpret and analyze the consequences of water loss at the membranes of dehydrated cells. In this regard, a correlation between the effects of water activity on cell growth and the lipid composition is discussed in terms of the recovery of the cell volume and their viability. Critical analyses of the properties of water at the interface of lipid membranes merging from these results and others from the literature suggest that the interface links the membrane with the aqueous soluble proteins in a functional unit in which the cell may be considered as a complex structure stabilized by water rather than a water solution of macromolecules surrounded by a semi permeable barrier. © 2008 Elsevier B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Pomata, M.H.H. - Laria, D. - Skaf, M.S. - Elola, M.D.
J Chem Phys 2008;129(24)
2008

Descripción: We present results from molecular dynamics simulations performed on reverse micelles immersed in cyclohexane. Three different inner polar phases are considered: water (W), formamide (FM), and an equimolar mixture of the two solvents. In all cases, the surfactant was sodium bis(2-ethylhexyl) sulfosuccinate (usually known as AOT). The initial radii of the micelles were R∼15 Å, while the corresponding polar solvent-to-surfactant molar ratios were intermediate between w0 =4.3 for FM and w0 =7 for W. The resulting overall shapes of the micelles resemble distorted ellipsoids, with average eccentricities of the order of ∼0.75. Moreover, the pattern of the surfactant layer separating the inner pool from the non-polar phase looks highly irregular, with a roughness characterized by length scales comparable to the micelle radii. Solvent dipole orientation polarization along radial directions exhibit steady growths as one moves from central positions toward head group locations. Local density correlations within the micelles indicate preferential solvation of sodium ionic species by water, in contrast to the behavior found in bulk equimolar mixtures. Still, a sizable fraction of ∼90% of Na+ remains associated with the head groups. Compared to bulk results, the translational and rotational modes of the confined solvents exhibit important retardations, most notably those operated in rotational motions where the characteristic time scales may be up to 50 times larger. Modifications of the intramolecular connectivity expressed in terms of the average number of hydrogen bonds and their lifetimes are also discussed. © 2008 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo