por que contenga las palabras

Busqueda avanzada

9 documentos corresponden a la consulta.
Palabras contadas: conformational: 25, transition: 99
Ballicora, M.A. - Wolosiuk, R.A.
Eur. J. Biochem. 1994;222(2):467-474
1994

Descripción: To characterize the mechanism of chloroplast fructose‐1,6‐bisphosphatase activation, we have examined kinetic and structural changes elicited by protein perturbants and reductants. At variance with its well‐known capacity for enzyme inactivation, 150 mM sodium trichloroacetate yielded an activatable chloroplast fructose‐1,6‐bisphosphatase in the presence of 1.0 mM fructose 1,6‐bisphosphate and 0.1 mM Ca2+. Other sugar bisphosphates did not replace fructose 1,6‐bisphosphate whereas Mg2+ and Mn2+ were functional in place of Ca2+. Variations of the emission fluorescence of intrinsic fluorophores and a noncovalently bound extrinsic probe [2‐(P‐toluidinyl)naphthalene‐6‐sulfonate] indicated the presence of conformations different from the native form. A similar conclusion was drawn from the analysis of absorption spectra by means of fourth‐derivative spectrophotometry. The effect of these conformational changes on the reductive process was studied by subsequently incubating the enzyme with dithiothreitol. The reaction of chloroplast fructose‐1,6‐bisphosphatase with dithiothreitol was accelerated 13‐fold by the chaotropic anion: second‐order rate constants were 48.1 M−1· min−1 and 3.7 M−1· min−1 in the presence and in the absence of trichloroacetate, respectively. Thus, the enhancement of the reductive activation by compounds devoid of redox activity illustrated that the modification of intramolecular noncovalent interactions of chloroplast fructose‐1,6‐bisphosphatase plays an essential role in the conversion of enzyme disulfide bonds to sulfhydryl groups. In consequence, a conformational change would operate concertedly with the reduction of disulfide bridges in the light‐dependent activation mediated by the ferredoxin–thioredoxin system. Copyright © 1994, Wiley Blackwell. All rights reserved
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Piwien-Pilipuk, G. - Kanelakis, K.C. - Ghini, A.A. - Lantos, C.P. - Litwack, G. - Burton, G. - Galigniana, M.D.
Biochim. Biophys. Acta Mol. Cell Res. 2002;1589(1):31-48
2002

Descripción: The alkylation of amino groups of the mineralocorticoid receptor (MR) with pyridoxal 5′-phosphate or 2,4,6-trinitrobenzenesulphonate (TNBS) under controlled conditions modifies only one lysyl residue, which accounts for a 70% inhibition of steroid binding capacity. The Kd of aldosterone for MR is not affected by the treatment, but the total number of binding sites is greatly decreased. The modified receptor is capable of dynamically conserving its association with the hsp90-based heterocomplex. Importantly, the binding of natural agonists protects the hormone binding capacity of the MR from the inactivating action of alkylating agents. In contrast, antagonistic steroids are totally incapable of providing such protection. Like the antagonistic ligands, and despite its potent mineralocorticoid biological effect, the sole MR specific synthetic agonist known to date, 11,19-oxidoprogesterone (11-OP), shows no protective effect upon treatment of the MR with pyridoxal 5′-phosphate or TNBS. Limited digestion of the MR with α-chymotrypsin generates a 34 kDa fragment, which becomes totally resistant to digestion upon binding of natural agonists, but not upon binding of antagonists. Interestingly, the synthetic 21-deoxypregnanesteroid 11-OP exhibits an intermediate pattern of proteolytic degradation, suggesting that the conformational change generated in the MR is not equivalent to that induced by antagonists or natural agonists. We conclude that in the first steps of activation, the MR changes its conformation upon binding of the ligand. However, the nature of this conformational change depends on the nature of the ligand. The experimental evidence shown in this work suggests that a single lysyl group can determine the hormone specificity of the MR. © 2002 Elsevier Science B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Dodes Traian, M.M. - Cattoni, D.I. - Levi, V. - González Flecha, F.L.
PLoS ONE 2012;7(6)
2012

Descripción: Lipid-protein interactions play an essential role in the regulation of biological function of integral membrane proteins; however, the underlying molecular mechanisms are not fully understood. Here we explore the modulation by phospholipids of the enzymatic activity of the plasma membrane calcium pump reconstituted in detergent-phospholipid mixed micelles of variable composition. The presence of increasing quantities of phospholipids in the micelles produced a cooperative increase in the ATPase activity of the enzyme. This activation effect was reversible and depended on the phospholipid/detergent ratio and not on the total lipid concentration. Enzyme activation was accompanied by a small structural change at the transmembrane domain reported by 1-aniline-8-naphtalenesulfonate fluorescence. In addition, the composition of the amphipilic environment sensed by the protein was evaluated by measuring the relative affinity of the assayed phospholipid for the transmembrane surface of the protein. The obtained results allow us to postulate a two-stage mechanistic model explaining the modulation of protein activity based on the exchange among non-structural amphiphiles at the hydrophobic transmembrane surface, and a lipid-induced conformational change. The model allowed to obtain a cooperativity coefficient reporting on the efficiency of the transduction step between lipid adsorption and catalytic site activation. This model can be easily applied to other phospholipid/detergent mixtures as well to other membrane proteins. The systematic quantitative evaluation of these systems could contribute to gain insight into the structure-activity relationships between proteins and lipids in biological membranes. © 2012 Dodes Traian et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Fernández, P.V. - Quintana, I. - Cerezo, A.S. - Caramelo, J.J. - Pol-Fachin, L. - Verli, H. - Estevez, J.M. - Ciancia, M.
J. Biol. Chem. 2013;288(1):223-233
2013

Descripción: A highly sulfated 3-linked β-arabinan (Ab1) with arabinose in the pyranose form was obtained from green seaweed Codium vermilara (Bryopsidales). It comprised major amounts of units sulfated on C-2 and C-4 and constitutes the first polysaccharide of this type isolated in the pure form and fully characterized. Ab1 showed anticoagulant activity by global coagulation tests. Less sulfated arabinans obtained from the same seaweed have less or no activity. Ab1 exerts its activity through direct and indirect (antithrombin- and heparin cofactor II-mediated) inhibition of thrombin. Direct thrombin inhibition was studied in detail. By native PAGE, it was possible to detect formation of a complex between Ab1 and human thrombin (HT). Ab1 binding to HT was measured by fluorescence spectroscopy. CD spectra of the Ab1 complex suggested that ligand binding induced a small conformational change on HT. Ab1-thrombin interactions were studied by molecular dynamic simulations using the persulfated octasaccharide as model compound. Most carbohydrate-protein contacts would occur by interaction of sulfate groups with basic amino acid residues on the surface of the enzyme, more than 60% of them being performed by the exosite 2-composing residues. In these interactions, the sulfate groups on C-2 were shown to interact more intensely with the thrombin structure. In contrast, the disulfated oligosaccharide does not promote major conformational modifications at the catalytic site when complexed to exosite 1. These results show that this novel pyranosic sulfated arabinan Ab1 exerts its anticoagulant activity by a mechanism different from those found previously for other sulfated polysaccharides and glycosaminoglycans. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Oliveira, A. - Singh, S. - Bidon-Chanal, A. - Forti, F. - Martí, M.A. - Boechi, L. - Estrin, D.A. - Dikshit, K.L. - Luque, F.J.
PLoS ONE 2012;7(11)
2012

Descripción: The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O 2 and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O 2 /CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN. © 2012 Oliveira et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Frankel, N.
Dev. Dyn. 2012;241(12):1857-1866
2012

Descripción: Genomes contain the necessary information to ensure that genes are expressed in the right place, at the right time, and with the proper rate. Metazoan developmental genes often possess long stretches of DNA flanking their coding sequences and/or large introns which contain elements that influence gene expression. Most of these regulatory elements are relatively small and can be studied in isolation. For example, transcriptional enhancers, the elements that generate the expression pattern of a gene, have been traditionally studied with reporter constructs in transgenic animals. These studies have provided and will provide invaluable insights into enhancer evolution and function. However, this experimental approach has its limits; often, enhancer elements do not faithfully recapitulate native expression patterns. This fact suggests that additional information in cis-regulatory regions modulates the activity of enhancers and other regulatory elements. Indeed, recent studies have revealed novel functional aspects at the level of whole cis-regulatory regions. First, the discovery of "shadow enhancers." Second, the ubiquitous interactions between cis-regulatory elements. Third, the notion that some cis-regulatory regions may not function in a modular manner. Last, the effect of chromatin conformation on cis-regulatory activity. In this article, I describe these recent findings and discuss open questions in the field. © 2012 Wiley Periodicals, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Mohana-Borges, R. - Silva, J.L. - Ruiz-Sanz, J. - De Prat-Gay, G.
Proc. Natl. Acad. Sci. U. S. A. 1999;96(14):7888-7893
1999

Descripción: The noncovalent complex formed by the association of two fragments of chymotrypsin inhibitor-2 is reversibly denatured by pressure in the absence of chemical denaturants. On pressure release, the complex returned to its original conformation through a biphasic reaction, with first-order rate constants of 0.012 and 0.002 s-1, respectively. The slowest phase arises from an interconversion of the pressure-denatured state, as revealed by double pressure-jump experiments. Below 5 μM, the process was concentration dependent with a second-order rate constant of 1,700 s-1 M-1. Fragment association at atmospheric pressure showed a similar break in the order of the reaction above 5 μM, but both first- and second-order folding/association rates are 2.5 times faster than those for the refolding of the pressure-denatured state. Although the folding rates of the intact protein and the association of the fragments displayed nonlinear Eyring behavior for the temperature dependence, refolding of the pressure-denatured complex showed a linear response. The negligible heat capacity of activation reflects a balance of minimal change in the burial of residues from the pressure-denatured state to the transition state. If we add the higher energy barrier in the refolding of the pressure-denatured state, the rate differences must lie in the structure of this state, which has to undergo a structural rearrangement. This clearly differs from the conformational flexibility of the isolated fragments or the largely unfolded denatured state of the intact protein in acid and provides insight into denatured states of proteins under folding conditions.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Marazita, M.C. - Florencia Ogara, M. - Sonzogni, S.V. - Martí, M. - Dusetti, N.J. - Pignataro, O.P. - Cánepa, E.T.
PLoS ONE 2012;7(4)
2012

Descripción: DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, b-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with 32P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage. © 2012 Marazita et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Presman, D.M. - Alvarez, L.D. - Levi, V. - Eduardo, S. - Digman, M.A. - Martí, M.A. - Veleiro, A.S. - Burton, G. - Pecci, A.
PLoS ONE 2010;5(10)
2010

Descripción: Background: The glucocorticoid receptor (GR) is a transcription factor that regulates gene expression in a ligand-dependent fashion. This modular protein is one of the major pharmacological targets due to its involvement in both cause and treatment of many human diseases. Intense efforts have been made to get information about the molecular basis of GR activity. Methodology/Principal Findings: Here, the behavior of four GR-ligand complexes with different glucocorticoid and antiglucocorticoid properties were evaluated. The ability of GR-ligand complexes to oligomerize in vivo was analyzed by performing the novel Number and Brightness assay. Results showed that most of GR molecules form homodimers inside the nucleus upon ligand binding. Additionally, in vitro GR-DNA binding analyses suggest that ligand structure modulates GRDNA interaction dynamics rather than the receptor's ability to bind DNA. On the other hand, by coimmunoprecipitation studies we evaluated the in vivo interaction between the transcriptional intermediary factor 2 (TIF2) coactivator and different GR-ligand complexes. No correlation was found between GR intranuclear distribution, cofactor recruitment and the homodimerization process. Finally, Molecular determinants that support the observed experimental GR LBD-ligand/TIF2 interaction were found by Molecular Dynamics simulation. Conclusions/Significance: The data presented here sustain the idea that in vivo GR homodimerization inside the nucleus can be achieved in a DNA-independent fashion, without ruling out a dependent pathway as well. Moreover, since at least one GR-ligand complex is able to induce homodimer formation while preventing TIF2 coactivator interaction, results suggest that these two events might be independent from each other. Finally, 21-hydroxy-6,19-epoxyprogesterone arises as a selective glucocorticoid with potential pharmacological interest. Taking into account that GR homodimerization and cofactor recruitment are considered essential steps in the receptor activation pathway, results presented here contribute to understand how specific ligands influence GR behavior. © 2010 Presman et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo