por que contenga las palabras

Busqueda avanzada

2 documentos corresponden a la consulta.
Palabras contadas: ph: 64, local: 162
Tagliazucchi, M. - De La Cruz, M.O. - Szleifer, I.
Proc. Natl. Acad. Sci. U. S. A. 2010;107(12):5300-5305
2010

Descripción: The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Reinicke, K.E. - Bey, E.A. - Bentle, M.S. - Pink, J.J. - Ingalls, S.T. - Hoppel, C.L. - Misico, R.I. - Arzac, G.M. - Burton, G. - Bornmann, W.G. - Sutton, D. - Gao, J. - Boothman, D.A.
Clin. Cancer Res. 2005;11(8):3055-3064
2005

Descripción: β-Lapachone, an o-naphthoquinone, induces a novel caspase- and p53-independent apoptotic pathway dependent on NAD (P) H:quinone oxidoreductase 1 (NQO1). NQO1 reduces β-lapachone to an unstable hydroquinone that rapidly undergoes a two-step oxidation back to the parent compound, perpetuating a futile redox cycle. A deficiency or inhibition of NQO1 rendered cells resistant to beta;-lapachone. Thus, β-lapachone has great potential for the treatment of specific cancers with elevated NQO1 levels (e.g., breast, non - small cell lung, pancreatic, colon, and prostate cancers). We report the development of mono(arylimino) derivatives of β-lapachone as potential prodrugs. These derivatives are relatively nontoxic and not substrates for NQO1 when initially diluted in water. In solution, however, they undergo hydrolytic conversion to β-lapachone at rates dependent on the electron-withdrawing strength of their substituent groups and pH of the diluent. NQO1 enzyme assays, UV-visible spectrophotometry, high-performance liquid chromatography-electrospray ionization-mass spectrometry, and nuclear magnetic resonance analyses confirmed and monitored conversion of each derivative to β-lapachone. Once converted, β-lapachone derivatives caused NQO1-dependent, μ-calpain-mediated cell death in human cancer cells identical to that caused by β-lapachone. Interestingly, coadministration of N-acetyt-L-cysteine prevented derivative-induced cytotoxicity but did not affect β-lapachone lethality. Nuclear magnetic resonance analyses indicated that prevention of β-lapachone derivative cytotoxicity was the result of direct modification of these derivatives by N-acetyl-L-cysteine, preventing their conversion to β-lapachone. The use of β-lapachone mono(arylimino) prodrug derivatives, or more specifically a derivative converted in a tumor-specific manner (i.e., in the acidic local environment of the tumor tissue), should reduce normal tissue toxicity while eliciting tumor-selective cell killing by NQO1 bioactivation. © 2005 American Association for Cancer Research.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo