por que contenga las palabras

Busqueda avanzada

12 documentos corresponden a la consulta.
Palabras contadas: molecules: 96, water: 314
Semino, R. - Laria, D.
J Chem Phys 2012;136(19)
2012

Descripción: Using molecular dynamics experiments, we analyze equilibrium and dynamical characteristics related to the solvation of excess protons in water-acetone mixtures. Our approach is based on the implementation of an extended valence-bond Hamiltonian, which incorporates translocation of the excess charge between neighboring water molecules. Different mixtures have been analyzed, starting from the pure water case down to solutions with a water molar fraction x w 0.25. In all cases, we have verified that the structure of the first solvation shell of the H 3 O moiety remains practically unchanged, compared to the one observed in pure water. This shell is composed by three water molecules acting as hydrogen bond acceptors, with no evidence of hydrogen bond donor-like connectivity. Moreover, the increment in the acetone concentration leads to a gradual stabilization of Eigen-like [H 3O·(H 2O) 3] configurations, in detriment of Zundel-like [H·(H 2O) 2] ones. Rates of proton transfer and proton diffusion coefficients have been recorded at various water-acetone relative concentrations. In both cases, we have found a transition region, in the vicinity of x w ∼ 0.8, where the concentration dependences of the two magnitudes change at a quantitative level. A crude estimate shows that, at this tagged concentration, the volumes occupied by the two solvents become comparable. The origins of this transition separating water-rich from acetone-rich realms is rationalized in terms of modifications operated in the nearby, second solvation shell, which in the latter solutions, normally includes at least, one acetone molecule. Our results would suggest that one possible mechanism controlling the proton transfer in acetone-rich solutions is the exchange of one of these tagged acetone molecules, by nearby water ones. This exchange would give rise to Zundel-like structures, exhibiting a symmetric, first solvation shell composed exclusively by water molecules, and would facilitate the transfer between neighboring water molecules along the resonant complex. © 2012 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Semino, R. - Martí, J. - Guàrdia, E. - Laria, D.
J Chem Phys 2012;137(19)
2012

Descripción: We carried out molecular dynamics simulation experiments to examine equilibrium and dynamical characteristics of the solvation of excess protons in mesoscopic, [m:n] binary polar clusters comprising m 50 water molecules and n 6, 25, and 100 acetone molecules. Contrasting from what is found in conventional macroscopic phases, the characteristics of the proton solvation are dictated, to a large extent, by the nature of the concentration fluctuations prevailing within the clusters. At low acetone contents, the overall cluster morphology corresponds to a segregated aqueous nucleus coated by an external aprotic phase. Under these circumstances, the proton remains localized at the surface of the water core, in a region locally deprived from acetone molecules. At higher acetone concentrations, we found clear evidence of the onset of the mixing process. The cluster structures present aqueous domains with irregular shape, fully embedded within the acetone phase. Still, the proton remains coordinated to the aqueous phase, with its closest solvation shell composed exclusively by three water molecules. As the relative concentration of acetone increases, the time scales characterizing proton transfer events between neighboring water molecules show considerable retardations, stretching into the nanosecond time domain already for n ∼ 25. In water-rich aggregates, and similarly to what is found in the bulk, proton transfers are controlled by acetone/water exchange processes taking place at the second solvation shell of the proton. As a distinctive feature of the transfer mechanism, translocation pathways also include diffusive motions of the proton from the surface down into inner regions of the underlying water domain. © 2012 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Disalvo, E.A. - Lairion, F. - Martini, F. - Almaleck, H. - Diaz, S. - Gordillo, G.
- 2004;92(4-6):1-22
2004

Descripción: The purpose of this review is to examine and discuss the ways in which water is organized at the interface of a biological membrane. The relevance of this structure to the surface properties and to the adsorption of proteins in membranes is also analized. The approach is based on the idea that cell functions are confined to a restricted water media, the cell interior, in which the proximity of the membrane may be key to regulating the enzyme activity and the cell membrane permeability. As the lipid bilayer is the structural base of cell membranes, the distribution of water in the surface sites of a phospholipid membrane is analyzed by means of Fourier Transform spectrometry. The polarization of water at the surface was looked into through the measure of surface potentials and the dynamics of the surface hydration by cyclic voltammetry. Modification of these properties by the replacement of water by polyol molecules such as trehalose and phloretin and by the insertion of aqueous soluble enzymes, has also been investigated.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Campo, M.G. - Grigera, J.R.
J Chem Phys 2005;123(8)
2005

Descripción: We have studied the hydration and diffusion of the hydroxyl radical O H0 in water using classical molecular dynamics. We report the atomic radial distribution functions, hydrogen-bond distributions, angular distribution functions, and lifetimes of the hydration structures. The most frequent hydration structure in the O H0 has one water molecule bound to the O H0 oxygen (57% of the time), and one water molecule bound to the O H0 hydrogen (88% of the time). In the hydrogen bonds between the O H0 and the water that surrounds it the O H0 acts mainly as proton donor. These hydrogen bonds take place in a low percentage, indicating little adaptability of the molecule to the structure of the solvent. All hydration structures of the O H0 have shorter lifetimes than those corresponding to the hydration structures of the water molecule. The value of the diffusion coefficient of the O H0 obtained from the simulation was 7.1× 10-9 m2 s-1, which is higher than those of the water and the O H-. © 2005 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

De La Llave, E. - Molinero, V. - Scherlis, D.A.
J Chem Phys 2010;133(3)
2010

Descripción: Molecular dynamics simulations of water in cylindrical hydrophilic pores with diameters of 1.5 and 3 nm were performed to explore the phase behavior and the nucleation dynamics of the confined fluid as a function of the percentage of volume filled f. The interactions of water with the pore wall were considered to be identical to the interactions between water molecules. At low water contents, all the water is adsorbed to the surface of the pore. A second phase consisting of a liquid plug appears at the onset filling for capillary condensation, fonset =27% and 34% for the narrow and wide pores, respectively. In agreement with experimental results for silica pores, the liquid phase appears close to the equilibrium filling feq in the 1.5 nm pore and under conditions of strong surface supersaturations for the 3 nm pore. After condensation, two phases, a liquid plug and a surface-adsorbed phase, coexist in equilibrium. Under conditions of phase coexistence, the water surface density Tcoex was found to be independent of the water content and the diameter of the pore. The value of Tcoex found in the simulations (∼3 nm-2) is in good agreement with experimental results for silica pores, suggesting that the interactions of water with silica and with itself are comparable. The surface-adsorbed phase at coexistence is a sparse monolayer with a structure dominated by small water clusters. We characterize the density and structure of the liquid and surface phases, the nucleation mechanism of the water plug, and the effect of surface hydrophilicity on the two-phase equilibrium and hysteresis. The results are discussed in light of experiments and previous simulations. © 2010 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Estrin, D.A. - Paglieri, L. - Corongiu, G. - Clementi, E.
Journal of Physical Chemistry 1996;100(21):8701-8711
1996

Descripción: Sviluppo e Studi Superior! in Sardegna (CRS4). The geometries, interaction energies, and harmonic vibrational frequencies of water clusters (with up to 8 molecules) have been studied using density functional theory (DFT) at the gradient corrected level. The water monomer and water dimer calculations have been used as benchmarks to investigate different choices for basis sets and density functionals. Our results for larger clusters agree with both available high-level ab initio calculations and experimental information. The calculations of the vibrational frequencies and IR absorption intensities for the larger clusters, for which no other reliable quantum-chemical calculation is available, are presented to facilitate the frequency assignment of experimental spectra.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Disalvo, E.A. - Lairion, F. - Martini, F. - Tymczyszyn, E. - Frías, M. - Almaleck, H. - Gordillo, G.J.
Biochim. Biophys. Acta Biomembr. 2008;1778(12):2655-2670
2008

Descripción: The scope of the present review focuses on the interfacial properties of cell membranes that may establish a link between the membrane and the cytosolic components. We present evidences that the current view of the membrane as a barrier of permeability that contains an aqueous solution of macromolecules may be replaced by one in which the membrane plays a structural and functional role. Although this idea has been previously suggested, the present is the first systematic work that puts into relevance the relation water-membrane in terms of thermodynamic and structural properties of the interphases that cannot be ignored in the understanding of cell function. To pursue this aim, we introduce a new definition of interphase, in which the water is organized in different levels on the surface with different binding energies. Altogether determines the surface free energy necessary for the structural response to changes in the surrounding media. The physical chemical properties of this region are interpreted in terms of hydration water and confined water, which explain the interaction with proteins and could affect the modulation of enzyme activity. Information provided by several methodologies indicates that the organization of the hydration states is not restricted to the membrane plane albeit to a region extending into the cytoplasm, in which polar head groups play a relevant role. In addition, dynamic properties studied by cyclic voltammetry allow one to deduce the energetics of the conformational changes of the lipid head group in relation to the head-head interactions due to the presence of carbonyls and phosphates at the interphase. These groups are, apparently, surrounded by more than one layer of water molecules: a tightly bound shell, that mostly contributes to the dipole potential, and a second one that may be displaced by proteins and osmotic stress. Hydration water around carbonyl and phosphate groups may change by the presence of polyhydroxylated compounds or by changing the chemical groups esterified to the phosphates, mainly choline, ethanolamine or glycerol. Thus, surface membrane properties, such as the dipole potential and the surface pressure, are modulated by the water at the interphase region by changing the structure of the membrane components. An understanding of the properties of the structural water located at the hydration sites and the functional water confined around the polar head groups modulated by the hydrocarbon chains is helpful to interpret and analyze the consequences of water loss at the membranes of dehydrated cells. In this regard, a correlation between the effects of water activity on cell growth and the lipid composition is discussed in terms of the recovery of the cell volume and their viability. Critical analyses of the properties of water at the interface of lipid membranes merging from these results and others from the literature suggest that the interface links the membrane with the aqueous soluble proteins in a functional unit in which the cell may be considered as a complex structure stabilized by water rather than a water solution of macromolecules surrounded by a semi permeable barrier. © 2008 Elsevier B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Longinotti, M.P. - Carignano, M.A. - Szleifer, I. - Corti, H.R.
J Chem Phys 2011;134(24)
2011

Descripción: In this work we studied the effect of NaCl on the thermodynamic and dynamic properties of supercooled water, for salt concentrations between 0.19 and 1.33mol kg-1, using molecular dynamic simulations for TIP5PE water model and ion parameters specially designed to be used in combination with this potential. We studied the isobaric heat capacity (Cp) temperature dependence and observed a maximum in Cp, occurring at Tm, that moves to lower temperature values with increasing salt concentration. Many characteristic changes were observed at scaled temperature TTm ∼ 0.96, namely a minimum in the density of the system, a reduction of the slope of the number of hydrogen bonds vs. temperature, and a crossover from Vogel-Tamman-Fulcher to Arrhenius dynamics. Finally, at low temperatures we observed that water dynamics become heterogeneous with an apparently common relationship between the fraction of immobile molecules and T/Tm for all studied systems. © 2011 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Baggio, R. - Garland, M.T. - Perec, M.
Acta Crystallogr Sect C Cryst Struct Commun 2003;59(1):m30-m32
2003

Descripción: A new polymeric phase of zinc(II) oxydiacetate, catena-poly[[[diaquazinc(II)]-μ-oxydiacetato] hydrate], {[Zn(C4H4-O5)(H2O)2] ·H2O}n, isomorphous with the Co homologue [Hatfield, Helms, Rohrs, Singh, Wasson & Weller (1987). Proc. Indian Acad. Sci. Chem. Sci. 98, 23-31], is reported. It presents a chain-like structure, generated by ZnO6 cores which are bridged by carboxylate groups in an anti-anti conformation along the unique crystallographic b axis. The chains are held together through hydrogen-bonding interactions with the three water molecules.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Umazano, J.P. - Bertolotto, J.A.
J Chem Phys 2013;138(9)
2013

Descripción: We study the effect of translational-rotational hydrodynamic coupling on the transient electric linear dichroism of DNA fragments in aqueous solution. As opposed to previous theoretical works, where analytic solutions valid in the limit of low electric field were reported, we present here a numerical approach which allows to obtain numerical results valid independently from the applied electric field strength. Numerical procedures here used are an extension to the transient-state of those developed in a previous work for the study of the problem in the steady-state. The molecular orientational processes induced by an electric field is characterized with statistical arguments solving the Fokker-Planck equation by means of the finite difference method to know the orientational distribution function of molecules. © 2013 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

de Ménorval, M.-A. - Mir, L.M. - Fernández, M.L. - Reigada, R.
PLoS ONE 2012;7(7)
2012

Descripción: Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations. © 2012 de Ménorval et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Rodriguez, J.
J Chem Phys 1999;110(18):9039-9047
1999

Descripción: Energetics, structural features, polarity, and melting transitions in water clusters containing up to eight molecules were studied using ab initio methods and empirical force field models. Our quantum approach was based on density functional theory performed at the generalized gradient approximation level. For the specific case of (H2O)6, we selected five conformers of similar energy with different geometries and dipolar moments. For these cases, the cyclic arrangement was found to be the only nonpolar aggregate. For (H2O)8, the most stable structures corresponded to nonpolar, cubic-like, D2d and S4 conformers. Higher energy aggregates exhibit a large spectrum in their polarities. The static polarizability was found to be proportional to the size of the aggregates and presents a weak dependence with the number of hydrogen bonds. In order to examine the influence of thermal fluctuations on the aggregates, we have performed a series of classical molecular dynamics experiments from low temperature up to the melting transition using two different effective pseudopotentials: the TIP4P and MCY models. Minimum energy structures for both classical potentials were found to reproduce reasonably well the results obtained using ab initio methods. Isomerization and phase transitions were monitored by following changes in dipole moments, number of hydrogen bonds and Lindemann's parameter. For (H2O)6 and (H2O)8, the melting transitions were found at Tm≈50 and 160 K, respectively; for both aggregates, we observed premelting transitions between well differentiated conformers as well. © 1999 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo