por que contenga las palabras

Busqueda avanzada

8 documentos corresponden a la consulta.
Palabras contadas: quantum: 150, nuclear: 192, effects: 249
Videla, P.E. - Rossky, P.J. - Laria, D.
J Chem Phys 2013;139(17)
2013

Descripción: We use ring-polymer-molecular-dynamics (RPMD) techniques and the semi-empirical q-TIP4P/F water model to investigate the relationship between hydrogen bond connectivity and the characteristics of nuclear position fluctuations, including explicit incorporation of quantum effects, for the energetically low lying isomers of the prototype cluster [H2O] 8 at T = 50 K and at 150 K. Our results reveal that tunneling and zero-point energy effects lead to sensible increments in the magnitudes of the fluctuations of intra and intermolecular distances. The degree of proton spatial delocalization is found to map logically with the hydrogen-bond connectivity pattern of the cluster. Dangling hydrogen bonds exhibit the largest extent of spatial delocalization and participate in shorter intramolecular O-H bonds. Combined effects from quantum and polarization fluctuations on the resulting individual dipole moments are also examined. From the dynamical side, we analyze the characteristics of the infrared absorption spectrum. The incorporation of nuclear quantum fluctuations promotes red shifts and sensible broadening relative to the classical profile, bringing the simulation results in much more satisfactory agreement with direct experimental information in the mid and high frequency range of the stretching band. While RPMD predictions overestimate the peak position of the low frequency shoulder, the overall agreement with that reported using an accurate, parameterized, many-body potential is reasonable, and far superior to that one obtains by implementing a partially adiabatic centroid molecular dynamics approach. Quantum effects on the collective dynamics, as reported by instantaneous normal modes, are also discussed. © 2013 AIP Publishing LLC.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Alkorta, I. - Elguero, J. - Provasi, P.F. - Pagola, G.I. - Ferraro, M.B.
J Chem Phys 2011;135(10)
2011

Descripción: The set of 1:1 and 2:1 complexes of XOOX′ (X, X′ H, CH 3) with lithium cation has been studied to determine if they are suitable candidates for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. Conventional nuclear magnetic resonance is unable to distinguish between enantiomers in the absence of a chiral solvent. The criterion for experimental detection is valuated by the isotropic part of nuclear shielding polarisability tensors, related to a pseudoscalar of opposite sign for two enantiomers. The study includes calculations at coupled Hartree-Fock and density functional theory schemes for 17O nucleus in each compound. Additional calculations for 1H are also included for some compounds. A huge static homogeneous electric field, perpendicular to the magnetic field of the spectromer, as big as ≈1.7 108 V m -1 should be applied to observe a shift of ≈1 ppm for 17O magnetic shielding in the proposed set of complexes. © 2011 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Videla, P.E. - Rossky, P.J. - Laria, D.
J Chem Phys 2013;139(16)
2013

Descripción: Ring polymer molecular dynamics experiments have been carried out to examine effects derived from nuclear quantum fluctuations at ambient conditions on equilibrium and non-equilibrium dynamical characteristics of charge solvation by a popular simple, rigid, water model, SPC/E, and for a more recent, and flexible, q-TIP4P/F model, to examine the generality of conclusions. In particular, we have recorded the relaxation of the solvent energy gap following instantaneous, ±e charge jumps in an initially uncharged Lennard-Jones-like solute. In both charge cases, quantum effects are reflected in sharper decays at the initial stages of the relaxation, which produce up to a ∼20% reduction in the characteristic timescales describing the solvation processes. For anionic solvation, the magnitude of polarization fluctuations controlling the extent of the water proton localization in the first solvation shell is somewhat more marked than for cations, bringing the quantum solvation process closer to the classical case. Effects on the solvation response from the explicit incorporation of flexibility in the water Hamiltonian are also examined. Predictions from linear response theories for the overall relaxation profile and for the corresponding characteristic timescales are reasonably accurate for the solvation of cations, whereas we find that they are much less satisfactory for the anionic case. © 2013 AIP Publishing LLC.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Weht, R.O. - Kohanoff, J. - Estrin, D.A. - Chakravarty, C.
J Chem Phys 1998;108(21):8848-8858
1998

Descripción: A novel method for simulating the statistical mechanics of molecular systems in which both nuclear and electronic degrees of freedom are treated quantum mechanically is presented. The scheme combines a path integral description of the nuclear variables with a first-principles adiabatic description of the electronic structure. The electronic problem is solved for the ground state within a density functional approach, with the electronic orbitals expanded in a localized (Gaussian) basis set. The discretized path integral is computed by a METROPOLIS Monte Carlo sampling technique on the normal modes of the isomorphic ring polymer. An effective short-time action correct to order τ4 is used. The validity and performance of the method are tested by studying two small lithium clusters, namely Li4 and Li5+. Structural and electronic properties computed within this fully quantum-mechanical scheme are presented and compared to those obtained within the classical nuclei approximation. Quantum delocalization effects turn out to be significant as shown by the fact that quantum simulation results at 50 K approximately correspond to those of classical simulations carried out at 150 K. The scaling factor depends, however, on the specific physical property, thus evidencing the different character of quantum and thermal correlations. Tunneling turns out to be irrelevant in the temperature range investigated (50-200 K). © 1998 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Pagola, G.I. - Caputo, M.C. - Ferraro, M.B. - Lazzeretti, P.
J Chem Phys 2004;120(20):9556-9560
2004

Descripción: A computational scheme was developed for a fourth-rank hyprmagnetizability tensor denoted by Xαβγδ. It was shown that this instrinsic property of diamagnetic atoms and molecules was useful to rationalize their nonlinear response to intense magnetic field. The terms connected with the fourth power of the perturbing field which represent the fourth-rank hypermagnetizability of the H2, HF, H2O, NH3, and CH4 molecules were evaluated at the coupled Hartree-Fock level of accuracy. The Gaugeless basis sets of increasing size and flexibility that adopted two different coordinate systems to estimate the degree of convergence of theoretical tensor components was employed.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ferraro, M.B. - Caputo, M.C. - Pagola, G.I. - Lazzeretti, P.
J Chem Phys 2008;128(4)
2008

Descripción: Computational procedures, based on (i) the Ramsey common origin approach and (ii) the continuous transformation of the origin of the quantum mechanical current density-diamagnetic zero (CTOCD-DZ), were applied at the Hartree-Fock level to determine electric quadrupole polarizabilities of nuclear magnetic shielding for molecules in the presence of a nonuniform electric field with a uniform gradient. The quadrupole polarizabilities depend on the origin of the coordinate system, but values of the magnetic field induced at a reference nucleus, determined via the CTOCD-DZ approach, are origin independent for any calculations relying on the algebraic approximation, irrespective of size and quality of the (gaugeless) basis set employed. On the other hand, theoretical estimates of the induced magnetic field obtained by single-origin methods are translationally invariant only in the limit of complete basis sets. Calculations of electric quadrupole polarizabilities of nuclear magnetic shielding are reported for H2, HF, H2 O, N H3, and C H4 molecules. © 2008 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Caputo, M.C. - Ferraro, M.B. - Lazzeretti, P.
J Chem Phys 2000;112(14):6141-6151
2000

Descripción: A procedure, based on a continuous transformation of the origin of the (quantum mechanical) current density that sets the diamagnetic contribution to zero (CTOCD-DZ) all over the molecular domain, is applied to determine shielding polarizabilities to first order in a perturbing electric field. In any calculations relying on the algebraic approximation, irrespective of size and quality of the (gaugeless) basis set employed, all the components of the CTOCD-DZ magnetic shielding polarizability are origin independent, and the constraints for charge and current conservation are exactly satisfied. The effects of a static uniform electric field on the nuclear magnetic resonance (NMR) shielding of H2O2, F2, H2C2, H2CO, NH3, HCN, and HNC molecules have been investigated within the CTOCD-DZ method, and compared with the conventional results evaluated via the same basis sets, and with theoretical results taken from the literature. © 2000 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Arcisauskaite, V. - Melo, J.I. - Hemmingsen, L. - Sauer, S.P.A.
J Chem Phys 2011;135(4)
2011

Descripción: We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL2 (L = Cl, Br, I, CH 3) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH3)2 within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr 2 and HgI2 when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo