por que contenga las palabras

Busqueda avanzada

57 documentos corresponden a la consulta.
Palabras contadas: membrane: 197, protein: 1717
Yaneff, A. - Sigaut, L. - Marquez, M. - Alleva, K. - Pietrasanta, L.I. - Amodeo, G.
Proc. Natl. Acad. Sci. U. S. A. 2014;111(1):231-236
2014

Descripción: The plant aquaporin plasma membrane intrinsic proteins (PIP) subfamily represents one of the main gateways for water exchange at the plasma membrane (PM). A fraction of this subfamily, known as PIP1, does not reach the PM unless they are coexpressed with a PIP2 aquaporin. Although ubiquitous and abundantly expressed, the role and properties of PIP1 aquaporins have therefore remained masked. Here, we unravel how FaPIP1;1, a fruit-specific PIP1 aquaporin from Fragaria x ananassa, contributes to the modulation of membrane water permeability (Pf) and pH aquaporin regulation. Our approach was to combine an experimental and mathematical model design to test its activity without affecting its trafficking dynamics. We demonstrate that FaPIP1;1 has a high water channel activity when coexpressed as well as how PIP1-PIP2 affects gating sensitivity in terms of cytosolic acidification. PIP1-PIP2 random heterotetramerization not only allows FaPIP1;1 to arrive at the PMbut also produces an enhancement of FaPIP2;1 activity. In this context, we propose that FaPIP1;1 is a key participant in the regulation of water movement across the membranes of cells expressing both aquaporins.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Dodes Traian, M.M. - Cattoni, D.I. - Levi, V. - González Flecha, F.L.
PLoS ONE 2012;7(6)
2012

Descripción: Lipid-protein interactions play an essential role in the regulation of biological function of integral membrane proteins; however, the underlying molecular mechanisms are not fully understood. Here we explore the modulation by phospholipids of the enzymatic activity of the plasma membrane calcium pump reconstituted in detergent-phospholipid mixed micelles of variable composition. The presence of increasing quantities of phospholipids in the micelles produced a cooperative increase in the ATPase activity of the enzyme. This activation effect was reversible and depended on the phospholipid/detergent ratio and not on the total lipid concentration. Enzyme activation was accompanied by a small structural change at the transmembrane domain reported by 1-aniline-8-naphtalenesulfonate fluorescence. In addition, the composition of the amphipilic environment sensed by the protein was evaluated by measuring the relative affinity of the assayed phospholipid for the transmembrane surface of the protein. The obtained results allow us to postulate a two-stage mechanistic model explaining the modulation of protein activity based on the exchange among non-structural amphiphiles at the hydrophobic transmembrane surface, and a lipid-induced conformational change. The model allowed to obtain a cooperativity coefficient reporting on the efficiency of the transduction step between lipid adsorption and catalytic site activation. This model can be easily applied to other phospholipid/detergent mixtures as well to other membrane proteins. The systematic quantitative evaluation of these systems could contribute to gain insight into the structure-activity relationships between proteins and lipids in biological membranes. © 2012 Dodes Traian et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

de Iannino, N.I. - Ugalde, R.A.
J. Bacteriol. 1989;171(5):2842-2849
1989

Descripción: The chvA gene product of Agrobacterium tumefaciens is required for virulence and attachment of bacteria to plant cells. Three chvA mutants were studied. In vivo, they were defective in the synthesis, accumulation, and secretion of beta-(1-2)glucan; however, the 235-kilodalton (kDa) protein known to be involved in the synthesis of beta-(1-2)glucan (A. Zorreguieta and R. Ugalde, J. Bacteriol. 167:947-951, 1986) was present and active in vitro. was present and active in vitro. Two molecular forms of cyclic beta-(1-2)glucan, designated types I and II, were resolved by gel chromatography. Type I beta-(1-2)glucan was substituted with nonglycosidic residues, and type II beta-(1-2)glucan was nonsubstituted. Wild-type cells accumulated type I beta-(1-2)glucan, and chvA mutant cells accumulated mainly type II beta-(1-2)glucan and a small amount of type I beta-(1-2)glucan. Inner membranes of wild-type and chvA mutants formed in vitro type II nonsubstituted beta-(1-2)glucan. A 75-kDa inner membrane protein is proposed to be the chvA gene product. chvA mutant inner membranes had increased levels of 235-kDa protein; partial trypsin digestion patterns suggested that the 235-kDa protein (the gene product of the chvB region) and the gene product of the chvA region form a complex in the inner membrane that is involved in the synthesis, secretion, and modification of beta-(1-2)glucan. All of the defects assigned to the chvA mutation were restored after complementation with plasmid pCD522 containing the entire chvA region.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Colón-González, F. - Leskow, F.C. - Kazanietz, M.G.
J. Biol. Chem. 2008;283(50):35247-35257
2008

Descripción: Chimaerins are a family of GTPase activating proteins (GAPs) for the small G-protein Rac that have gained recent attention due to their important roles in development, cancer, neuritogenesis, and T-cell function. Like protein kinase C isozymes, chimaerins possess a C1 domain capable of binding phorbol esters and the lipid second messenger diacylglycerol (DAG) in vitro. Here we identified an autoinhibitory mechanism in α2-chimaerin that restricts access of phorbol esters and DAG, thereby limiting its activation. Although phorbol 12-myristate 13-acetate (PMA) caused limited translocation of wild-type α2-chimaerin to the plasma membrane, deletion of either N- or C-terminal regions greatly sensitize α2-chimaerin for intracellular redistribution and activation. Based on modeling analysis that revealed an occlusion of the ligand binding site in the α2-chimaerin C1 domain, we identified key amino acids that stabilize the inactive conformation. Mutation of these sites renders α2-chimaerin hypersensitive to C1 ligands, as reflected by its enhanced ability to translocate in response to PMA and to inhibit Rac activity and cell migration. Notably, in contrast to PMA, epidermal growth factor promotes full translocation of α2-chimaerin in a phospholipase C-dependent manner, but not of a C1 domain mutant with reduced affinity for DAG (P216A-α2- chimaerin). Therefore, DAG generation and binding to the C1 domain are required but not sufficient for epidermal growth factor-induced α2-chimaerin membrane association. Our studies suggest a role for DAG in anchoring rather than activation of α2-chimaerin. Like other DAG/phorbol ester receptors, including protein kinase C isozymes, α2-chimaerin is subject to autoinhibition by intramolecular contacts, suggesting a highly regulated mechanism for the activation of this Rac-GAP. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Disalvo, E.A. - Lairion, F. - Martini, F. - Tymczyszyn, E. - Frías, M. - Almaleck, H. - Gordillo, G.J.
Biochim. Biophys. Acta Biomembr. 2008;1778(12):2655-2670
2008

Descripción: The scope of the present review focuses on the interfacial properties of cell membranes that may establish a link between the membrane and the cytosolic components. We present evidences that the current view of the membrane as a barrier of permeability that contains an aqueous solution of macromolecules may be replaced by one in which the membrane plays a structural and functional role. Although this idea has been previously suggested, the present is the first systematic work that puts into relevance the relation water-membrane in terms of thermodynamic and structural properties of the interphases that cannot be ignored in the understanding of cell function. To pursue this aim, we introduce a new definition of interphase, in which the water is organized in different levels on the surface with different binding energies. Altogether determines the surface free energy necessary for the structural response to changes in the surrounding media. The physical chemical properties of this region are interpreted in terms of hydration water and confined water, which explain the interaction with proteins and could affect the modulation of enzyme activity. Information provided by several methodologies indicates that the organization of the hydration states is not restricted to the membrane plane albeit to a region extending into the cytoplasm, in which polar head groups play a relevant role. In addition, dynamic properties studied by cyclic voltammetry allow one to deduce the energetics of the conformational changes of the lipid head group in relation to the head-head interactions due to the presence of carbonyls and phosphates at the interphase. These groups are, apparently, surrounded by more than one layer of water molecules: a tightly bound shell, that mostly contributes to the dipole potential, and a second one that may be displaced by proteins and osmotic stress. Hydration water around carbonyl and phosphate groups may change by the presence of polyhydroxylated compounds or by changing the chemical groups esterified to the phosphates, mainly choline, ethanolamine or glycerol. Thus, surface membrane properties, such as the dipole potential and the surface pressure, are modulated by the water at the interphase region by changing the structure of the membrane components. An understanding of the properties of the structural water located at the hydration sites and the functional water confined around the polar head groups modulated by the hydrocarbon chains is helpful to interpret and analyze the consequences of water loss at the membranes of dehydrated cells. In this regard, a correlation between the effects of water activity on cell growth and the lipid composition is discussed in terms of the recovery of the cell volume and their viability. Critical analyses of the properties of water at the interface of lipid membranes merging from these results and others from the literature suggest that the interface links the membrane with the aqueous soluble proteins in a functional unit in which the cell may be considered as a complex structure stabilized by water rather than a water solution of macromolecules surrounded by a semi permeable barrier. © 2008 Elsevier B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Cardillo, S.B. - Moretti, M.B. - García, S.C.
Eukaryotic Cell 2010;9(8):1262-1271
2010

Descripción: The Saccharomyces cerevisiae UGA4 gene encodes a permease capable of importing γ-aminobutyric acid (GABA) and δ-aminolevulinic acid (ALA) into the cell. GABA-dependent induction of this permease requires at least two positive-acting proteins, the specific factor Uga3 and the pleiotropic factor Uga35/Dal81. UGA4 is subjected to a very complex regulation, and its induction is affected by the presence of extracellular amino acids; this effect is mediated by the plasma membrane amino acid sensor SPS. Our results show that leucine affects UGA4 induction and that the SPS sensor and the downstream effectors Stp1 and Stp2 participate in this regulation. Moreover, we found that the Uga3 and Uga35/Dal81 transcription factors bind to the UGA4 promoter in a GABA-dependent manner and that this binding is impaired by the presence of leucine. We also found that the Leu3 transcription factor negatively regulates UGA4 transcription, although this seems to be through an indirect mechanism. © 2010, American Society for Microbiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Schwede, A. - Manful, T. - Jha, B.A. - Helbig, C. - Bercovich, N. - Stewart, M. - Clayton, C.
Nucleic Acids Res. 2009;37(16):5511-5528
2009

Descripción: Removal of the poly(A) tail is the first step in the degradation of many eukaryotic mRNAs. In metazoans and yeast, the Ccr4/Caf1/Not complex has the predominant deadenylase activity, while the Pan2/Pan3 complex may trim poly(A) tails to the correct size, or initiate deadenylation. In trypanosomes, turnover of several constitutively-expressed or long-lived mRNAs is not affected by depletion of the 5'-3' exoribonuclease XRNA, but is almost completely inhibited by depletion of the deadenylase CAF1. In contrast, two highly unstable mRNAs, encoding EP procyclin and a phosphoglycerate kinase, PGKB, accumulate when XRNA levels are reduced. We here show that degradation of EP mRNA was partially inhibited after CAF1 depletion. RNAi-targeting trypanosome PAN2 had a mild effect on global deadenylation, and on degradation of a few mRNAs including EP. By amplifying and sequencing degradation intermediates, we demonstrated that a reduction in XRNA had no effect on degradation of a stable mRNA encoding a ribosomal protein, but caused accumulation of EP mRNA fragments that had lost substantial portions of the 5' and 3' ends. The results support a model in which trypanosome mRNAs can be degraded by at least two different, partially independent, cytoplasmic degradation pathways attacking both ends of the mRNA. © 2009 The Author(s).
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ardila, F.J. - Tandecarz, J.S.
Plant Physiol. 1992;99(4):1342-1347
1992

Descripción: Potato (Solanum tuberosum L.) tuber UDP-glucose:protein transglucosylase (UPTG) (EC 2.4.1.112) is involved in the first of a two-step mechanism proposed for protein-bound α-glucan synthesis by catalyzing the covalent attachment of a single glucose residue to an acceptor protein. The resulting glucosylated 38-kilodalton polypeptide would then serve as a primer for enzymic glucan chain elongation during the second step. In the present report, we describe the fast protein liquid chromatography purification of UPTG from a membrane pellet of potato tuber. An apparently close association of UPTG, phosphorylase, and starch synthase was observed under native conditions during different purification steps. Enrichment of a 38-kilodalton polypeptide was found throughout enzyme purification. It is now shown that the purified UPTG, with an apparent molecular mass of 38 kilodaltons, undergoes self-glucosylation in a UDP-glucose- and Mn2+-dependent reaction. Therefore, it is concluded that UPTG is the enzyme and at the same time the priming protein required for the biogenesis of protein-bound α-glucan in potato tuber.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Jozefkowicz, C. - Rosi, P. - Sigaut, L. - Soto, G. - Pietrasanta, L.I. - Amodeo, G. - Alleva, K.
PLoS ONE 2013;8(3)
2013

Descripción: Research done in the last years strongly support the hypothesis that PIP aquaporin can form heterooligomeric assemblies, specially combining PIP2 monomers with PIP1 monomers. Nevertheless, the structural elements involved in the ruling of homo versus heterooligomeric organization are not completely elucidated. In this work we unveil some features of monomer-monomer interaction in Beta vulgaris PIP aquaporins. Our results show that while BvPIP2;2 is able to interact with BvPIP1;1, BvPIP2;1 shows no functional interaction. The lack of functional interaction between BvPIP2;1 and BvPIP1;1 was further corroborated by dose-response curves of water permeability due to aquaporin activity exposed to different acidic conditions. We also found that BvPIP2;1 is unable to translocate BvPIP1;1-ECFP from an intracellular position to the plasma membrane when co-expressed, as BvPIP2;2 does. Moreover we postulate that the first extracellular loop (loop A) of BvPIP2;1, could be relevant for the functional interaction with BvPIP1;1. Thus, we investigate BvPIP2;1 loop A at an atomic level by Molecular Dynamics Simulation (MDS) and by direct mutagenesis. We found that, within the tetramer, each loop A presents a dissimilar behavior. Besides, BvPIP2;1 loop A mutants restore functional interaction with BvPIP1;1. This work is a contribution to unravel how PIP2 and PIP1 interact to form functional heterooligomeric assemblies. We postulate that BvPIP2;1 loop A is relevant for the lack of functional interaction with BvPIP1;1 and that the monomer composition of PIP assemblies determines their functional properties. © 2013 Jozefkowicz et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Bidart, G.N. - Ruiz, J.A. - de Almeida, A. - Méndez, B.S. - Nikel, P.I.
Appl. Environ. Microbiol. 2012;78(24):8784-8794
2012

Descripción: Bioprocesses conducted under conditions with restricted O2 supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative anaerobe Escherichia coli has elaborate sensing and signal transduction mechanisms for redox control in response to the availability of O2 and other electron acceptors. The ArcBA two-component system consists of ArcB, a membrane-associated sensor kinase, and ArcA, the cognate response regulator. The tripartite hybrid kinase ArcB possesses a transmembrane, a PAS, a primary transmitter (H1), a receiver (D1), and a phosphotransfer (H2) domain. Metabolic fluxes were compared under anoxic conditions in a wild-type E. coli strain, its ΔarcB derivative, and two partial arcB deletion mutants in which ArcB lacked either the H1 domain or the PAS-H1-D1 domains. These analyses revealed that elimination of different segments in ArcB determines a distinctive distribution of D-glucose catabolic fluxes, different from that observed in the ΔarcB background. Metabolite profiles, enzyme activity levels, and gene expression patterns were also investigated in these strains. Relevant alterations were observed at the P-enol-pyruvate/pyruvate and acetyl coenzyme A metabolic nodes, and the formation of reduced fermentation metabolites, such as succinate, D-lactate, and ethanol, was favored in the mutant strains to different extents compared to the wild-type strain. These phenotypic traits were associated with altered levels of the enzymatic activities operating at these nodes, as well as with elevated NADH/NAD+ ratios. Thus, targeted modification of global regulators to obtain different metabolic flux distributions under anoxic conditions is emerging as an attractive tool for metabolic engineering purposes. © 2012, American Society for Microbiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Biron, V.A. - Iglesias, M. - Troncoso, M.F. - Besio-Moreno, M. - Patrignani, Z.J. - Pignataro, O.P. - Wolfenstein-Todel, C.
Glycobiology 2006;16(9):810-821
2006

Descripción: Galectin-1 (Gal-1) is a widely expressed β-galactoside-binding protein that exerts pleiotropic biological functions. To gain insight into the potential role of Gal-1 as a novel modulator of Leydig cells, we investigated its effect on the growth and death of MA-10 tumor Leydig cells. In this study, we identified cytoplasmic Gal-1 expression in these tumor cells by cytofluorometry. DNA fragmentation, caspase-3, -8, and -9 activation, loss of mitochondrial membrane potential (ΔΨ m), cytochrome c (Cyt c) release, and FasL expression suggested that relatively high concentrations of exogenously added recombinant Gal-1 (rGal-1) induced apoptosis by the mitochondrial and death receptor pathways. These pathways were independently activated, as the presence of the inhibitor of caspase-8 or -9 only partially prevented Gal-1-effect. On the contrary, low concentrations of Gal-1 significantly promoted cell proliferation, without inducing cell death. Importantly, the presence of the disaccharide lactose prevented Gal-1 effects, suggesting the involvement of the carbohydrate recognition domain (CRD). This study provides strong evidence that Gal-1 is a novel biphasic regulator of Leydig tumor cell number, suggesting a novel role for Gal-1 in the reproductive physiopathology. © Copyright 2006 Oxford University Press.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Alleva, K. - Marquez, M. - Villarreal, N. - Mut, P. - Bustamante, C. - Bellati, J. - Martínez, G. - Civello, M. - Amodeo, G.
J. Exp. Bot. 2010;61(14):3935-3945
2010

Descripción: In strawberry, the putative participation of aquaporins should be considered during fruit ripening. Furthermore, the availability of different firmness cultivars in this non-climacteric fruit is a very useful tool to determine their involvement in softening. In a previous work, the cloning of a strawberry fruit-specific aquaporin, FaPIP1;1, which showed an expression profile associated with fruit ripening was reported. Here, FaPIP2;1, an aquaporin subtype of PIP2 was cloned and its functional characterization in Xenopus oocytes determined. The FaPIP2;1 gene encodes a water channel with high water permeability (Pf) that is regulated by cytosolic pH. Interestingly, the co-expression of both FaPIP subtypes resulted in an enhancement of water permeability, showing Pf values that exceeds their individual contribution. The expression pattern of both aquaporin subtypes in two cultivars with contrasting fruit firmness showed that the firmer cultivar (Camarosa) has a higher accumulation of FaPIP1 and FaPIP2 mRNAs during fruit ripening when compared with the softer cultivar (Toyonoka). In conclusion, not only FaPIP aquaporins showed an expression pattern associated with fruit firmness but it was also shown that the enhancement of water transfer through the plasma membrane is coupled to the presence/absence of the co-expression of both subtypes. © 2010 The Author(s).
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Roberti, M.J. - Jovin, T.M. - Jares-Erijman, E.
PLoS ONE 2011;6(8)
2011

Descripción: We assessed the intracellular association states of the Parkinson's disease related protein α-synuclein (AS) in living cells by transfection with a functional recombinant mutant protein (AS-C4) bearing a tetracysteine tag binding the fluorogenic biarsenical ligands FlAsH and ReAsH, The aggregation states of AS-C4 were assessed by in situ microscopy of molecular translational mobility with FRAP (fluorescence recovery after photobleaching) and of local molecular density with confocal fluorescence anisotropy (CFA). FRAP recovery was quantitative and rapid in regions of free protein, whereas AS in larger aggregates was>80% immobile. A small 16% recovery characterized by an apparent diffusion constant of 0.03-0.04 μm 2/s was attributed to the dynamics of smaller, associated forms of AS-C4 and the exchange of mobile species with the larger immobile aggregates. By CFA, the larger aggregates exhibited high brightness and very low anisotropy, consistent with homoFRET between closely packed AS, for which a Förster distance (R o) of 5.3 nm was calculated. Other bright regions had high anisotropy values, close to that of monomeric AS, and indicative of membrane-associated protein with both low mobility and low degree of association. The anisotropy-fluorescence intensity correlations also revealed regions of free protein or of small aggregates, undetectable by conventional fluorescence imaging alone. The combined strategy (FRAP+CFA) provides a highly sensitive means for elucidating both the dynamics and structural features of protein aggregates and other intracellular complexes in living cells, and can be extended to other amyloid systems and to drug screening protocols. © 2011 Roberti et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Echeverría, P.C. - Mazaira, G. - Erlejman, A. - Gomez-Sanchez, C. - Pilipuk, G.P. - Galigniana, M.D.
Mol. Cell. Biol. 2009;29(17):4788-4797
2009

Descripción: Glucocorticoid receptor (GR) is cytoplasmic in the absence of ligand and localizes to the nucleus after steroid binding. Previous evidence demonstrated that the hsp90-based heterocomplex bound to GR is required for the efficient retrotransport of the receptor to the nuclear compartment. We examined the putative association of GR and its associated chaperone heterocomplex with structures of the nuclear pore. We found that importin β and the integral nuclear pore glycoprotein Nup62 interact with hsp90, hsp70, p23, and the TPR domain proteins FKBP52 and PP5. Nup62 and GR were able to interact in a more efficient manner when chaperoned by the hsp90-based heterocomplex. Interestingly, the binding of hsp70 and p23 to Nup62 does not require the presence of hsp90, whereas the association of FKBP52 and PP5 is hsp90 dependent, as indicated by the results of experiments where the hsp90 function was disrupted with radicicol. The ability of both FKBP52 and PP5 to interact with Nup62 was abrogated in cells overexpressing the TPR peptide. Importantly, GR cross-linked to the hsp90 heterocomplex was able to translocate to the nucleus in digitonin-permeabilized cells treated with steroid, suggesting that GR could pass through the pore in its untransformed state. Copyright © 2009, American Society for Microbiology. All Rights Reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Alleva, K. - Chara, O. - Amodeo, G.
FEBS Lett. 2012;586(19):2991-2999
2012

Descripción: Osmolarity not only plays a key role in celluar homeostasis but also challenges cell survival. The molecular understanding of osmosis has not yet been completely achieved, and the discovery of aquaporins as molecular entities involved in water transport has caused osmosis to again become a focus of research. The main questions that need to be answered are the mechanism underlying the osmotic permeability coefficients and the extent to which aquaporins change our understanding of osmosis. Here, attempts to answer these questions are discussed. Critical aspects of the state of the state of knowledge on osmosis, a topic that has been studied since 19th century, are reviewed and integrated with the available information provided by in vivo, in vitro and in silico approaches. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Gambino, Y.P. - Pérez Pérez, A. - Dueñas, J.L. - Calvo, J.C. - Sánchez-Margalet, V. - Varone, C.L.
Biochim. Biophys. Acta Mol. Cell Res. 2012;1823(4):900-910
2012

Descripción: The placenta produces a wide number of molecules that play essential roles in the establishment and maintenance of pregnancy. In this context, leptin has emerged as an important player in reproduction. The synthesis of leptin in normal trophoblastic cells is regulated by different endogenous biochemical agents, but the regulation of placental leptin expression is still poorly understood. We have previously reported that 17β-estradiol (E 2) up-regulates placental leptin expression. To improve the understanding of estrogen receptor mechanisms in regulating leptin gene expression, in the current study we examined the effect of membrane-constrained E 2 conjugate, E-BSA, on leptin expression in human placental cells. We have found that leptin expression was induced by E-BSA both in BeWo cells and human placental explants, suggesting that E 2 also exerts its effects through membrane receptors. Moreover E-BSA rapidly activated different MAPKs and AKT pathways, and these pathways were involved in E 2 induced placental leptin expression. On the other hand we demonstrated the presence of ERα associated to the plasma membrane of BeWo cells. We showed that E 2 genomic and nongenomic actions could be mediated by ERα. Supporting this idea, the downregulation of ERα level through a specific siRNA, decreased E-BSA effects on leptin expression. Taken together, these results provide new evidence of the mechanisms whereby E 2 regulates leptin expression in placenta and support the importance of leptin in placental physiology. © 2012 Elsevier B.V..
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Fitzsimons, C.P. - Monczor, F. - Fernández, N. - Shayo, C. - Davio, C.
J. Biol. Chem. 2004;279(33):34431-34439
2004

Descripción: Accurate characterization of the molecular mechanisms of the action of ligands is an extremely important issue for their appropriate research, pharmacological, and therapeutic uses. In view of this fact, the aim of the present work was to investigate the mechanisms involved in the actions of mepyramine at the guinea pig H1 receptor stably expressed in Chinese hamster ovary cells. We found that mepyramine is able to decrease the basal constitutive activity of the guinea pig H1 receptor, to bind with high affinity to a Gq/11 protein-coupled form of the receptor and to promote a G protein-coupled inactive state of the H1 receptor that interferes with the Gq/11-mediated signaling of the endogenously expressed ATP receptor, as predicted by the Cubic Ternary Complex Model of receptor occupancy. The effect of mepyramine on ATP-induced signaling was specifically neutralized by Gα11 overexpression, indicating that mepyramine is able to reduce G protein availability for other non-related receptors associated with the same signaling pathway. Finally, we found a loss of mepyramine efficacy in decreasing basal levels of intracellular calcium at high Gα11 expression levels, which can be theoretically explained in terms of high H1 receptor constitutive activity. The whole of the present work sheds new light on H1 receptor pharmacology and the mechanisms H1 receptor inverse agonists could use to exert their observed negative efficacy.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Hoijman, E. - Rocha Viegas, L. - Keller Sarmiento, M.I. - Rosenstein, R.E. - Pecci, A.
Endocrinology 2004;145(1):418-425
2004

Descripción: The antiapoptotic effect of melatonin has been described in several systems. In this study, the antagonistic effect of the methoxyindole on dexamethasone-induced apoptosis in mouse thymocytes was examined. Melatonin decreased both DNA fragmentation, and the number of annexin V-positive cells incubated in the presence of dexamethasone. Analysis of the expression of the members of the Bcl-2 family indicated that the synthetic glucocorticoid increased Bax protein levels without affecting the levels of Bcl-2, Bcl-X L, Bcl-X S, or Bak. This effect correlated with an increase in thymocytes bax mRNA levels. Dexamethasone also increased the release of cytochrome C from mitochondria. All of these effects were reduced in the presence of melatonin, which was ineffective per se on these parameters. In addition, the involvement of cAMP on glucocorticoid/melatonin antagonism was examined. Both melatonin and dexamethasone decreased the levels of this nucleotide in mouse thymocytes, indicating that the antagonistic action between both hormones involves a cAMP-independent pathway. In summary, the present results suggest that the antiapoptotic effect of melatonin on glucocorticoid-treated thymocytes would be a consequence of an inhibition of the mitochondrial pathway, presumably through the regulation of Bax protein levels.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

López, C.S. - Alice, A.F. - Heras, H. - Rivas, E.A. - Sánchez-Rivas, C.
Microbiology 2006;152(3):605-616
2006

Descripción: The importance of the content of anionic phospholipids [cardiolipin (CL) and phosphatidylglycerol (PG)] in the osmotic adaptation and in the membrane structure of Bacillus subtilis cultures was investigated. Insertion mutations in the three putative cardiolipin synthase genes (ywiE, ywnE and ywjE) were obtained. Only the ywnE mutation resulted in a complete deficiency in cardiolipin and thus corresponds to a true clsA gene. The osmotolerance of a clsA mutant was impaired: although at NaCl concentrations lower than 1.2 M the growth curves were similar to those of its wild-type control, at 1 .5 M NaCl (LBN medium) the lag period increased and the maximal optical density reached was lower. The membrane of the clsA mutant strain showed an increased PG content, at both exponential and stationary phase, but no trace of CL in either LB or LBN medium. As well as the deficiency in CL synthesis, the clsA mutant showed other differences in lipid and fatty acids content compared to the wild-type, suggesting a cross-regulation in membrane lipid pathways, crucial for the maintenance of membrane functionality and integrity. The biophysical characteristics of membranes and large unilamellar vesicles from the wild-type and clsA mutant strains were studied by Laurdan's steady-state fluorescence spectroscopy. At physiological temperature, the clsA mutant showed a decreased lateral lipid packing in the protein-free vesicles and isolated membranes compared with the wild-type strain. Interestingly, the lateral lipid packing of the membranes of both the wild-type and clsA mutant strains increased when they were grown in LBN. In a conditional IPTG-controlled pgsA mutant, unable to synthesize PG and CL in the absence of IPTG, the osmoresistance of the cultures correlated with their content of anionic phospholipids. The transcriptional activity of the clsA and pgsA genes was similar and increased twofold upon entry to stationary phase or under osmotic upshift. Overall, these results support the involvement of the anionic phospholipids in the growth of B. subtilis in media containing elevated NaCl concentrations. © 2006 SGM.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

< Anteriores
(Resultados 21 - 40)