por que contenga las palabras

Busqueda avanzada

5 documentos corresponden a la consulta.
Palabras contadas: air: 38, sea: 74, interaction: 229
Bianchi, A.A. - Pino, D.R. - Isbert Perlender, H.G. - Osiroff, A.P. - Segura, V. - Lutz, V. - Clara, M.L. - Balestrini, C.R. - Piola, A.R.
J. Geophys. Res. C Oceans 2009;114(3)
2009

Tipo de documento: info:ar-repo/semantics/artículo

Bianchi, A.A. - Bianucci, L. - Piola, A.R. - Pino, D.R. - Schloss, I. - Poisson, A. - Balestrini, C.F.
J. Geophys. Res. C Oceans 2005;110(7):1-10
2005

Descripción: The thermohaline structure across the tidal fronts of the continental shelf off Patagonia is analyzed using historical and recent summer hydrographic sections. The near-summer tidal front location is determined on the basis of the magnitude of vertical stratification of the water column as measured by the Simpson parameter. Sea surface and air CO2 partial pressures based on data from eleven transects collected in summer and fall from 2000 to 2004 are used to estimate CO2 fluxes over the shelf. The near-shore waters are a source of CO2 to the atmosphere while the midshelf region is a CO2 sink. The transition between source and sink regions closely follows the location of tidal fronts, suggesting a link between vertical stratification of the water column and the regional CO2 balance. The highest surface values of Chl a are associated with the strongest CO2 sinks. The colocation of lowest CO2 partial pressure (pCO2) and highest Chl a suggests that phytoplankton blooms on the stratified side of the fronts draw the ocean's CO2 to very low levels. The mean shelf sea-air difference in pCO2 (ΔpCO2) is -24 μatm and rises to -29 μatm if the shelf break front is included. Peaks in ΔpCO2 of -110 μatm, among the highest observed in the global ocean, are observed. The estimated summer mean CO2 flux over the shelf is -4.4 mmol m-2 d-1 and rises to -5.7 mmol m-2 d-1 when the shelf break area is taken into account. Thus, during the warm season the shelf off Patagonia is a significant atmospheric CO2 sink. Copyright 2005 by the American Geophysical Union.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Robledo, F.A. - Penalba, O.C. - Bettolli, M.L.
Int. J. Climatol. 2013;33(3):735-745
2013

Descripción: A Singular value decomposition (SVD) analysis was performed jointly on the daily intensity of extreme rainfall (DIER) over Argentina and the sea surface temperature (SST) of all the oceans from 17.5°N to 90°S in order to identify the large-scale variability of the SSTs related to extreme rainfall, in the period 1962-2005. The main objective of the article is to objectively recognize regions of the tropical and subtropical oceans that could be related with the extreme rainfall over Argentina. Spring is the season that is best represented by the first mode, accounting for up to 45% of the covariance between the DIER and SST. The first SVD mode of spring, summer and autumn presents a pattern of SST relating to the El Niño-Southern Oscillations (ENSO) phenomena with an enhanced DIER in different zones of centre and east of Argentina. In the second SVD mode of spring and summer, the SST patterns show cold conditions in the tropical and subtropical Atlantic and near Indonesia with an enhancement of the DIER in the centre and east of Argentina. These modes show a significant decadal variability. In the third SVD mode of spring and summer, the SST patterns present warm and cold conditions in the Indian Ocean and the centre and western Pacific Ocean (PO) with decreased rainfall in the northern and eastern portion of Argentina, respectively. This mode shows a significant period of temporal variability of around 14 years. The third mode of autumn presents warm conditions in the tropical Atlantic and the southwest PO with a low DIER in the centre and east of Argentina. This mode also presents temporal variability of around 14 years. The correlation between each mode derived from analysis of SVD and climate indices related with SST were computed. © 2012 Royal Meteorological Society.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Schloss, I.R. - Ferreyra, G.A. - Ferrario, M.E. - Almandoz, G.O. - Codina, R. - Bianchi, A.A. - Balestrini, C.F. - Ochoa, H.A. - Pino, D.R. - Poisson, A.
Mar. Ecol. Prog. Ser. 2007;332:93-106
2007

Descripción: The influence of the plankton community structure on carbon dynamics was studied in the surface waters of the Argentinean continental shelf (SW Atlantic Ocean) in summer and fall 2002, 2003 and 2004, The horizontal changes in plankton community respiration (R), net community production (NCP) and gross primary production (GPP) were (1) compared with the difference in the partial pressure of CO2 (pCO2) between the sea surface and the atmosphere (ΔpCO2), (2) compared with oxygen saturation and (3) related to the microscopic phytoplankton assemblages, This area, which has recently been shown to be a CO2 sink, had an average surface oxygen saturation of 108.1%, indicating that net photosynthesis could have played a dominant role in the CO2 dynamics. At most stations, the production:respiration (GPP:R) ratio was greater than 1, indicating that planktonic communities were autotrophic; the average GPP:R ratio for the whole study was 2.99, Phytoplankton biomass (chlorophyll a) and NCP showed an inverse relationship with ΔpCO2 and a direct relationship with %O 2 saturation when phytoplankton assemblages were dominated by diatoms (30% of the stations), This was not the case when small (≤5 μm) flagellates were the most abundant organisms, Although NCP was mostly positive for both groups of stations (i.e. diatom-dominated or small flagellate- dominated), other physical and biological processes are thought to modify the CO2 dynamics when small flagellates are the prevailing phytoplankton group. © Inter-Research 2007.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

De La Torre, A. - Alexander, P. - Hierro, R. - Llamedo, P. - Rolla, A. - Schmidt, T. - Wickert, J.
J. Geophys. Res. D Atmos. 2012;117(2)
2012

Descripción: Above the southern Andes range and its prolongation in the Antarctic Peninsula, large-amplitude mountain and shear gravity waves observed with Weather Research and Forecasting (WRF) mesoscale model simulations during winter 2009 are analyzed. Two specific reasons motivated this study: (1) a decade of satellite observations of temperature fluctuations in the stratosphere, allowing us to infer that this region may be launching the largest-amplitude gravity waves into the upper atmosphere, and (2) the recent design of a research program to investigate these features in detail, the Southern Andes Antarctic Gravity wave Initiative (SAANGRIA). The simulations are forced with ERA-Interim data from the European Centre for Medium-Range Weather Forecasts. The approach selected for the regional downscaling is based on consecutive integrations with weekly reinitialization with 24 h of spin-up, and the outputs during this period are excluded from the analysis. From 1 June to 31 August 2009, five case studies were selected on the basis of their outstanding characteristics and large wave amplitudes. In general, one or two prevailing modes of oscillation are identified after applying continuous wavelet transforms at constant pressure levels and perpendicularly to the nominal orientation of the dominant wave crests. In all cases, the dominant modes are characterized by horizontal wavelengths around 50 km. Their vertical wavelengths, depending on a usually strong background wind shear, are estimated to be between 2 and 11 km. The corresponding intrinsic periods range between 10 and 140 min. In general, the estimated vertical wavelength (intrinsic period) maximizes (minimizes) around 250-300 hPa. The synoptic circulation for each case is described. Zonal and meridional components of the vertical flux of horizontal momentum are shown in detail for each case, including possible horizontal wavelengths between 12 and 400 km. Large values of this flux are observed at higher pressure levels, decreasing with increasing height after a progressive deposition of momentum by different mechanisms. As expected, in the wintertime upper troposphere and lower stratosphere in this region, a prevailing zonal component is negative almost everywhere, with the exception of one case above the northern tip of the Antarctic Peninsula. A comparison with previous experimental results reported in the region from in situ and remote sensing measurements suggests a good agreement with the momentum flux profiles computed from the simulations. Partial wave reflection near the tropopause was found, as considerable departures from equipartition between potential and kinetic wave energy are obtained in all cases and at all pressure levels. This ratio was always less than 1 below the lower stratosphere. Copyright 2012 by the American Geophysical Union.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo