por que contenga las palabras

Busqueda avanzada

5 documentos corresponden a la consulta.
Palabras contadas: proopiomelanocortin: 11
Bumaschny, V.F. - De Souza, F.S.J. - Leal, R.A.L. - Santangelo, A.M. - Baetscher, M. - Levi, D.H. - Low, M.J. - Rubinstein, M.
Mol. Endocrinol. 2007;21(11):2738-2749
2007

Descripción: The stress response involves complex physiological mechanisms that maximize behavioral efficacy during attack or defense and is highly conserved in all vertebrates. Key mediators of the stress response are pituitary hormones encoded by the proopiomelanocortin gene (POMC). Despite conservation of physiological function and expression pattern of POMC in all vertebrates, phylogenetic footprinting analyses at the POMC locus across vertebrates failed to detect conserved noncoding sequences with potential regulatory function. To investigate whether ortholog POMC promoters from extremely distant vertebrates are functionally conserved, we used 5′-flanking sequences of the teleost fish Tetraodon nigroviridis POMCα gene to produce transgenic mice. Tetraodon POMCα promoter targeted reporter gene expression exclusively to mouse pituitary cells that normally express Pomc. Importantly, transgenic expression in mouse corticotrophs was increased after adrenalectomy. To understand how conservation of precise gene expression mechanisms coexists with great sequence divergence, we investigated whether very short elements are still conserved in all vertebrate POMC promoters. Multiple local sequence alignments that consider phylogenetic relationships of ortholog regions identified a unique 10-bp motif GTGCTAA(T/G)CC that is usually present in two copies in POMC 5′-flanking sequences of all vertebrates. Underlined nucleotides represent totally conserved sequences. Deletion of these paired motifs from Tetraodon POMCα promoter markedly reduced its transcriptional activity in a mouse corticotropic cell line and in pituitary POMC cells of transgenic mice. In mammals, the conserved motifs correspond to reported binding sites for pituitary-specific nuclear proteins that participate in POMC transcriptional regulation. Together, these results demonstrate that mechanisms that participate in pituitary-specific and hormonally regulated expression of POMC have been preserved since mammals and teleosts diverged from a common ancestor 450 million years ago despite great promoter sequence divergence. Copyright © 2007 by The Endocrine Society.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

De Souza, F.S.J. - Bumaschny, V.F. - Low, M.J. - Rubinstein, M.
Mol. Biol. Evol. 2005;22(12):2417-2427
2005

Descripción: The proopiomelanocortin gene (POMC) encodes several bioactive peptides, including adrenocorticotropin hormone, α-, β-, and γ-melanocyte-stimulating hormone, and the opioid peptide β-endorphin, which play key roles in vertebrate physiology. In the human, mouse, and chicken genomes, there is only one POMC gene. By searching public genome projects, we have found that Tetraodon (Tetraodon nigroviridis), Fugu (Takifugu rubripes), and zebrafish (Danio rerio) possess two POMC genes, which we called POMCα and POMCβ, and we present phylogenetic and mapping evidence that these paralogue genes originated in the whole-genome duplication specific to the teleost lineage over 300 MYA. In addition, we present evidence for two types of subfunction partitioning between the paralogues. First, in situ hybridization experiments indicate that the expression domains of the ancestral POMC gene have been subfunctionalized in Tetraodon, with POMCα expressed in the nucleus lateralis tuberis of the hypothalamus, as well as in the rostral pars distalis and pars intermedia (PI) of the pituitary, whereas POMCβ is expressed in the preoptic area of the brain and weakly in the pituitary PI. Second, POMCβ genes have a β-endorphin segment that lacks the consensus opioid signal and seems to be under neutral evolution in tetraodontids, whereas POMCα genes possess well-conserved peptide regions. Thus, POMC paralogues have experienced subfunctionalization of both expression and peptide domains during teleost evolution. The study of regulatory regions of fish POMC genes might shed light on the mechanisms of enhancer partitioning between duplicate genes, as well as the roles of POMC-derived peptides in fish physiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Franchini, L.F. - López-Leal, R. - Nasif, S. - Beati, P. - Gelman, D.M. - Low, M.J. - De Souza, F.J.S. - Rubinstein, M.
Proc. Natl. Acad. Sci. U. S. A. 2011;108(37):15270-15275
2011

Descripción: The proopiomelanocortin gene (POMC) is expressed in a group of neurons present in the arcuate nucleus of the hypothalamus. Neuron-specific POMC expression in mammals is conveyed by two distal enhancers, named nPE1 and nPE2. Previous transgenic mouse studies showed that nPE1 and nPE2 independently drive reporter gene expression to POMC neurons. Here, we investigated the evolutionary mechanisms that shaped not one but two neuron- specific POMC enhancers and tested whether nPE1 and nPE2 drive identical or complementary spatiotemporal expression patterns. Sequence comparison among representative genomes of most vertebrate classes and mammalian orders showed that nPE1 is a placental novelty. Using in silico paleogenomics we found that nPE1 originated from the exaptation of a mammalian- apparent LTR retrotransposon sometime between the metatherian/ eutherian split (147 Mya) and the placental mammal radiation (≈90 Mya). Thus, the evolutionary origin of nPE1 differs, in kind and time, from that previously demonstrated for nPE2, which was exapted from a CORE-short interspersed nucleotide element (SINE) retroposon before the origin of prototherians, 166 Mya. Transgenic mice expressing the fluorescent markers tomato and EGFP driven by nPE1 or nPE2, respectively, demonstrated coexpression of both reporter genes along the entire arcuate nucleus. The onset of reporter gene expression guided by nPE1 and nPE2 was also identical and coincidental with the onset of Pomc expression in the presumptive mouse diencephalon. Thus, the independent exaptation of two unrelated retroposons into functional analogs regulating neuronal POMC expression constitutes an authentic example of convergent molecular evolution of cell-specific enhancers.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Kovalovsky, D. - Refojo, D. - Liberman, A.C. - Hochbaum, D. - Pereda, M.P. - Coso, O.A. - Stalla, G.K. - Holsboer, F. - Arzt, E.
Mol. Endocrinol. 2002;16(7):1638-1651
2002

Descripción: Nur factors are critical for proopiomelanocortin (POMC) induction by CRH in corticotrophs, but the pathways linking CRH to Nur are unknown. In this study we show that in AtT-20 corticotrophs CRH and cAMP induce Nur77 and Nurr1 expression and transcription at the NurRE site by protein kinase A (PKA) and calcium-dependent and -independent mechanisms. Calcium pathways depend on calmodulin kinase II (CAMKII) activity, and calcium-independent pathways are accounted for in part by MAPK activation (Rap1/B-Raf/MAPK-ERK kinase/ERK1/2), demonstrated by the use of molecular and pharmacological tools. ATT-20 corticotrophs express B-Raf, as do other cells in which cAMP stimulates MAPK. CRH/cAMP stimulated ERK2 activity and increased transcriptional activity of a Gal4-Elk1 protein, which was blocked by overexpression of dominant negative mutants and kinase inhibitors and stimulated by expression of B-Raf. The MAPK kinase inhibitors did not affect Nur77 and Nurr1 mRNA induction but blocked CRH or cAMP-stimulated Nur transcriptional activity. Moreover, MAPK stimulated phosphorylation and transactivation of Nur77. The functional impact of these pathways was confirmed at the POMC promoter. In conclusion, in AtT-20 corticotrophs the CRH/cAMP signaling that leads to Nur77/Nurr1 mRNA induction and transcriptional activation, and thus POMC expression, is dependent on protein kinase A and involves calcium/calmodulin kinase II (Nur induction/activation) and MAPK calcium-dependent and -independent (Nur phosphorylation-activation) pathways.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Santangelo, A.M. - De Souza, F.S.J. - Franchini, L.F. - Bumaschny, V.F. - Low, M.J. - Rubinstein, M.
PLoS Genet. 2007;3(10):1813-1826
2007

Descripción: The proopiomelanocortin gene (POMC) is expressed in the pituitary gland and the ventral hypothalamus of all jawed vertebrates, producing several bioactive peptides that function as peripheral hormones or central neuropeptides, respectively. We have recently determined that mouse and human POMC expression in the hypothalamus is conferred by the action of two 5′ distal and unrelated enhancers, nPE1 and nPE2. To investigate the evolutionary origin of the neuronal enhancer nPE2, we searched available vertebrate genome databases and determined that nPE2 is a highly conserved element in placentals, marsupials, and monotremes, whereas it is absent in nonmammalian vertebrates. Following an in silico paleogenomic strategy based on genome-wide searches for paralog sequences, we discovered that opossum and wallaby nPE2 sequences are highly similar to members of the superfamily of CORE-short interspersed nucleotide element (SINE) retroposons, in particular to MAR1 retroposons that are widely present in marsupial genomes. Thus, the neuronal enhancer nPE2 originated from the exaptation of a CORE-SINE retroposon in the lineage leading to mammals and remained under purifying selection in all mammalian orders for the last 170 million years. Expression studies performed in transgenic mice showed that two nonadjacent nPE2 subregions are essential to drive reporter gene expression into POMC hypothalamic neurons, providing the first functional example of an exapted enhancer derived from an ancient CORE-SINE retroposon. In addition, we found that this CORE-SINE family of retroposons is likely to still be active in American and Australian marsupial genomes and that several highly conserved exonic, intronic and intergenic sequences in the human genome originated from the exaptation of CORESINE retroposons. Together, our results provide clear evidence of the functional novelties that transposed elements contributed to their host genomes throughout evolution. © 2007 Santangelo et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo