por que contenga las palabras

Busqueda avanzada

2 documentos corresponden a la consulta.
Palabras contadas: epsin: 8
Mukherjee, D. - Coon, B.G. - Edwards III, D.F. - Hanna, C.B. - Longhi, S.A. - McCaffery, J.M. - Wendland, B. - Retegui, L.A. - Bi, E. - Aguilar, R.C.
J. Cell Sci. 2009;122(14):2453-2463
2009

Descripción: The epsins are a family of adaptors involved in recruiting other endocytic proteins, binding of ubiquitylated cargo and induction of membrane curvature. These molecules bear a characteristic epsin N-terminal homology (ENTH) domain and multiple peptide motifs that mediate protein-protein interactions. We have previously demonstrated that the ENTH domain of epsin is involved in Cdc42 signaling regulation. Here, we present evidence that yeast epsin 2 (Ent2) plays a signaling role during cell division. We observed that overexpression of the ENTH domain of Ent2 (ENTH2), but not Ent1, promoted the formation of chains of cells and aberrant septa. This dominant-negative effect resulted from ENTH2-mediated interference with septin assembly pathways. We mapped the ENTH2 determinants responsible for induction of the phenotype and found them to be important for efficient binding to the septin regulatory protein, Bem3. Supporting a physiological role for epsin 2 in cell division, the protein localized to sites of polarized growth and cytokinesis and rescued a defect in cell division induced by Bem3 misregulation. Collectively, our findings provide a potential molecular mechanism linking endocytosis (via epsin 2) with signaling pathways regulating cell division.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Aguilar, R.C. - Longhi, S.A. - Shaw, J.D. - Yeh, L.-Y. - Kim, S. - Schön, A. - Freire, E. - Hsu, A. - McCormick, W.K. - Watson, H.A. - Wendland, B.
Proc. Natl. Acad. Sci. U. S. A. 2006;103(11):4116-4121
2006

Descripción: Epsins are endocytic proteins with a structured epsin N-terminal homology (ENTH) domain that binds phosphoinositides and a poorly structured C-terminal region that interacts with ubiquitin and endocytic machinery, including clathrin and endocytic scaffolding proteins. Yeast has two redundant genes encoding epsins, ENT1 and ENT2; deleting both genes is lethal. We demonstrate that the ENTH domain is both necessary and sufficient for viability of ent1Δent2Δ cells. Mutational analysis of the ENTH domain revealed a surface patch that is essential for viability and that binds guanine nucleotide triphosphatase-activating proteins for Cdc42, a critical regulator of cell polarity in all eukaryotes. Furthermore, the epsins contribute to regulation of specific Cdc42 signaling pathways in yeast cells. These data support a model in which the epsins function as spatial and temporal coordinators of endocytosis and cell polarity. © 2006 by The National Academy of Sciences of the USA.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo