por que contenga las palabras

Busqueda avanzada

22 documentos corresponden a la consulta.
Palabras contadas: death: 38, cell: 1374
Ghiglione, H.O. - Gonzalez, F.G. - Serrago, R. - Maldonado, S.B. - Chilcott, C. - Curá, J.A. - Miralles, D.J. - Zhu, T. - Casal, J.J.
Plant J. 2008;55(6):1010-1024
2008

Descripción: The wheat spikelet meristem differentiates into up to 12 floret primordia, but many of them fail to reach the fertile floret stage at anthesis. We combined microarray, biochemical and anatomical studies to investigate floret development in wheat plants grown in the field under short or long days (short days extended with low-fluence light) after all the spikelets had already differentiated. Long days accelerated spike and floret development and greening, and the expression of genes involved in photosynthesis, photoprotection and carbohydrate metabolism. These changes started while the spike was in the light-depleted environment created by the surrounding leaf sheaths. Cell division ceased in the tissues of distal florets, which interrupted their normal developmental progression and initiated autophagy, thus decreasing the number of fertile florets at anthesis. A massive decrease in the expression of genes involved in cell proliferation, a decrease in soluble carbohydrate levels, and an increase in the expression of genes involved in programmed cell death accompanied anatomical signs of cell death, and these effects were stronger under long days. We propose a model in which developmentally generated sugar starvation triggers floret autophagy, and long days intensify these processes due to the increased carbohydrate consumption caused by the accelerated plant development. © 2008 The Authors.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Biron, V.A. - Iglesias, M. - Troncoso, M.F. - Besio-Moreno, M. - Patrignani, Z.J. - Pignataro, O.P. - Wolfenstein-Todel, C.
Glycobiology 2006;16(9):810-821
2006

Descripción: Galectin-1 (Gal-1) is a widely expressed β-galactoside-binding protein that exerts pleiotropic biological functions. To gain insight into the potential role of Gal-1 as a novel modulator of Leydig cells, we investigated its effect on the growth and death of MA-10 tumor Leydig cells. In this study, we identified cytoplasmic Gal-1 expression in these tumor cells by cytofluorometry. DNA fragmentation, caspase-3, -8, and -9 activation, loss of mitochondrial membrane potential (ΔΨ m), cytochrome c (Cyt c) release, and FasL expression suggested that relatively high concentrations of exogenously added recombinant Gal-1 (rGal-1) induced apoptosis by the mitochondrial and death receptor pathways. These pathways were independently activated, as the presence of the inhibitor of caspase-8 or -9 only partially prevented Gal-1-effect. On the contrary, low concentrations of Gal-1 significantly promoted cell proliferation, without inducing cell death. Importantly, the presence of the disaccharide lactose prevented Gal-1 effects, suggesting the involvement of the carbohydrate recognition domain (CRD). This study provides strong evidence that Gal-1 is a novel biphasic regulator of Leydig tumor cell number, suggesting a novel role for Gal-1 in the reproductive physiopathology. © Copyright 2006 Oxford University Press.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Pregi, N. - Vittori, D. - Pérez, G. - Leirós, C.P. - Nesse, A.
Biochim. Biophys. Acta Mol. Cell Res. 2006;1763(2):238-246
2006

Descripción: Since apoptosis appeared to be related to neurodegenerative processes, neuroprotection has been involved in investigation of therapeutic approaches focused upon pharmacological agents to prevent neuronal programmed cell death. In this regard, erythropoietin (Epo) seems to play a critical role. The present work was focused on the study of the Epo protective effect upon human neuroblastoma SH-SY5Y cells subjected to differentiation by staurosporine. Under this condition, profuse neurite outgrowth was accompanied by programmed cell death (35% of apoptotic cells by Hoechst assay, showing characteristic DNA ladder pattern). A previous treatment with recombinant human Epo (rHuEpo) increased the expression of the specific receptor for Epo while prevented apoptosis. Simultaneously, morphological changes in neurite elongation and interconnection induced by staurosporine were blocked by Epo. These Epo effects proved to be associated to the induction of Bcl-xL at the mRNA and protein levels (RT-PCR and Western blot after immunoprecipitation) and were mediated by activation of pathways inhibited by wortmannin. In conclusion, the fact that both events induced by staurosporine, cell apoptosis and differentiation, were prevented in SH-SY5Y cells previously exposed to rHuEpo suggests interrelated signaling pathways triggered by the Epo/EpoR interaction. © 2005 Elsevier B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Alaniz, L. - García, M.G. - Gallo-Rodriguez, C. - Agusti, R. - Sterín-Speziale, N. - Hajos, S.E. - Alvarez, E.
Glycobiology 2006;16(5):359-367
2006

Descripción: Several studies indicate that hyaluronan oligosaccharides (oHA) are able to modulate growth and cell survival in solid tumors; however, no studies have been undertaken to analyze the effect of oHA on T-lymphoid disorders. In this work we showed that oHA were able to induce apoptosis in lymphoma cell lines. Since PI3-K/Akt and nuclear factor-κB (NF-κB) are major factors involved in cell survival and anti-apoptotic pathways in lymphoma cells, we hypothesized that oHA could induce apoptosis through inhibition of these pathways. oHA were identified by a method which allows characterization of length using a high pH anion exchange chromatography with pulse amperometric detection (HPAEC-PAD). oHA inhibited PIP3 production (principal product of PI3-K activity) and reduced Akt phosphorylation levels, similarly to the specific inhibitor wortmannin. However, treatment with either oHA or wortmannin failed to inhibit constitutive NF-κB activity and modulate IκBα protein levels, suggesting that PI3-K and NF-κB signaling pathways are not related in the cell lines used. Cell behavior differed using native hyaluronan (HA), which induced PIP3 production, Akt phosphorylation, and NF-κB activation, although not related with cell survival since treatment with native HA showed no effect on apoptosis. Our results suggest that oHA induce apoptosis by suppression of PI3-K/Akt cell survival pathway without involving NF-κB activation, through a mechanism that differs from the one mediated by native HA. © 2006 Oxford University Press.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Blaustein, M. - Pérez-Munizaga, D. - Sánchez, M.A. - Urrutia, C. - Grande, A. - Risso, G. - Srebrow, A. - Alfaro, J. - Colman-Lerner, A.
PLoS ONE 2013;8(7)
2013

Descripción: The unfolded protein response (UPR) and the Akt signaling pathway share several regulatory functions and have the capacity to determine cell outcome under specific conditions. However, both pathways have largely been studied independently. Here, we asked whether the Akt pathway regulates the UPR. To this end, we used a series of chemical compounds that modulate PI3K/Akt pathway and monitored the activity of the three UPR branches: PERK, IRE1 and ATF6. The antiproliferative and antiviral drug Akt-IV strongly and persistently activated all three branches of the UPR. We present evidence that activation of PERK/eIF2α requires Akt and that PERK is a direct Akt target. Chemical activation of this novel Akt/PERK pathway by Akt-IV leads to cell death, which was largely dependent on the presence of PERK and IRE1. Finally, we show that hypoxia-induced activation of eIF2α requires Akt, providing a physiologically relevant condition for the interaction between Akt and the PERK branch of the UPR. These data suggest the UPR and the Akt pathway signal to one another as a means of controlling cell fate. © 2013 Blaustein et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Casas, A. - Fukuda, H. - Di Venosa, G. - Batlle, A.
Br. J. Cancer 2001;85(2):279-284
2001

Descripción: The use of more lipophilic derivatives of 5-aminolevulinic acid (ALA) is expected to have better diffusing properties, and after conversion into the parent ALA, to reach a higher protoporphyrin IX (PPIX) formation rate, thus improving the efficacy of topical photodynamic therapy (PDT). Here we have analysed the behaviour of 3 ALA derivatives (ALA methyl-ester, hexyl ester and a 2-sided derivative) regarding PPIX formation, efficiency in photosensitizing cells and mechanism of cellular death. The maximum amount of porphyrins synthesized from 0.6 mM ALA was 47 ± 8 ng/105 cells. The same amount was formed by a concentration 60-fold lower of hexyl-ALA and 2-fold higher of methyl-ALA. The 2-sided derivative failed to produce PPIX accumulation. Applying a 0.6 J cm-2 light dose, cell viability decreased to 50%. With the 1.5 J cm-2 light dose, less than 20% of the cells survive, and higher light doses produced nearly total cell killing. Comparing the PPIX production and the induced phototoxicity, the more the amount of porphyrins, the greater the cellular killing, and PPIX formed from either ALA or ALA-esters equally sensitize the cells to photoinactivation. ALA-PDT treated cells exhibited features of apoptosis, independently on the pro-photosensitizer employed. ALA-PDT can be improved with the use of ALA derivatives, reducing the amount of ALA necessary to induce efficient photosensitization. © 2001 Cancer Research Campaign.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Magariños, M.P. - Sánchez-Margalet, V. - Kotler, M. - Calvo, J.C. - Varone, C.L.
Biol. Reprod. 2007;76(2):203-210
2007

Descripción: Leptin, the 16-kDa protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta. In the present work, we studied a possible effect of leptin on trophoblastic cell proliferation, survival, and apoptosis. Recombinant human leptin added to JEG-3 and BeWo choriocarcinoma cell lines showed a stimulatory effect on cell proliferation up to 3 and 2.4 times, respectively, measured by 3H-thymidine incorporation and cell counting. These effects were time and dose dependent. Maximal effect was achieved at 250 ng leptin/ml for JEG-3 cells and 50 ng leptin/ml for BeWo cells. Moreover, by inhibiting endogenous leptin expression with 2 μM of an antisense oligonucleotide (AS), cell proliferation was diminished. We analyzed cell population distribution during the different stages of cell cycle by fluorescence-activated cell sorting, and we found that leptin treatment displaced the cells towards a G2/M phase. We also found that leptin upregulated cyclin D1 expression, one of the key cell cycle-signaling proteins. Since proliferation and death processes are intimately related, the effect of leptin on cell apoptosis was investigated. Treatment with 2 μM leptin AS increased the number of apoptotic cells 60 times, as assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and the caspase-3 activity was increased more than 2 fold. This effect was prevented by the addition of 100 ng leptin/ml. In conclusion, we provide evidence that suggests that leptin is a trophic and mitogenic factor for trophoblastic cells by virtue of its inhibiting apoptosis and promoting proliferation. © 2007 by the Society for the Study of Reproduction, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Glezer, I. - Chernomoretz, A. - David, S. - Plante, M.-M. - Rivest, S.
PLoS ONE 2007;2(3)
2007

Descripción: Glucocorticoids are potent regulators of the innate immune response, and alteration in this inhibitory feedback has detrimental consequences for the neural tissue. This study profiled and investigated functionally candidate genes mediating this switch between cell survival and death during an acute inflammatory reaction subsequent to the absence of glucocorticoid signaling. Oligonucleotide microarray analysis revealed that following lipopolysaccharide (LPS) intracerebral administration at striatum level, more modulated genes presented transcription impairment than exacerbation upon glucocorticoid receptor blockage. Among impaired genes we identified ceruloplasmin (Cp), which plays a key role in iron metabolism and is implicated in a neurodegenative disease. Microglial and endothelial induction of Cp is a natural neuroprotective mechanism during inflammation, because Cp-deficient mice exhibited increased iron accumulation and demyelination when exposed to LPS and neurovascular reactivity to pneumococcal meningitis. This study has identified genes that can play a critical role in programming the innate immune response, helping to clarify the mechanisms leading to protection or damage during inflammatory conditions in the CNS. © 2007 Glezer et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Blidner, A.G. - Rabinovich, G.A.
Am. J. Reprod. Immunol. 2013;69(4):369-382
2013

Descripción: Successful mammalian pregnancy relies upon acceptance of a semi-allogeneic fetus by the maternal immune system. Lessons learned from studies on protective immunity to microbial infections and tumours, prevention of autoimmunity, and allograft rejection have contributed to delineate the mechanisms leading to T-cell tolerance at the fetomaternal interface. Recent observations highlight the contribution of galectins, a family of endogenous glycan-binding proteins, to critical biological events occurring during mammalian gestation, including immune cell tolerance, inflammation, implantation, and angiogenesis. These multifunctional lectins can hierarchically control a cascade of immunoregulatory events including the expansion, recruitment, and function of regulatory T cells, the promotion of tolerogenic dendritic cells, and the execution of T-cell death programs. In addition, galectins can control cell adhesion and signaling events critical for implantation and are involved in fundamental processes linking tissue hypoxia to angiogenesis. In an attempt to integrate the regulatory roles of galectins to immunological and vascular programs operating during pregnancy. Here we outline the regulated expression and function of individual members of the galectin family within the fetoplacental unit and their biological implications for the development and preservation of successful pregnancies. © 2013 John Wiley & Sons A/S.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Rocha-Viegas, L. - Vicent, G.P. - Barañao, J.L. - Beato, M. - Pecci, A.
J. Biol. Chem. 2006;281(45):33959-33970
2006

Descripción: The bcl-X gene plays a critical role in apoptosis. Six different isoforms generated by tissue-specific promoter usage and alternative splicing were described. Some of them exert opposite effects on cell death. In mammary epithelial cells glucocorticoids induce bcl-X expression and increase the ratio bcl-XL (antiapoptotic)/bcl-XS (apoptotic) by activating P4 promoter, which contains two hormone response elements. Here we show that, on mouse thymocytes and T lymphocyte derivative S49 cells, glucocorticoids inhibited transcription from P4 and decreased the ratio bcl-X L/bcl-XS favoring apoptosis. Upon hormonal treatment, glucocorticoid receptor (GR), steroid receptor coactivator-1, and RNA polymerase II were transiently recruited to P4 promoter, whereas STAT5B was also recruited but remained bound. Concomitant with the release of GR, silencing mediator for retinoic acid receptor and thyroid hormone receptor and histone deacetylase 3 were recruited, histone H3 was deacetylated, and RNA polymerase II left the promoter. Inhibition of STAT5 activity reverted glucocorticoid repression to activation of transcription and was accompanied by stable recruitment of GR and RNA polymerase II to P4. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Reinicke, K.E. - Bey, E.A. - Bentle, M.S. - Pink, J.J. - Ingalls, S.T. - Hoppel, C.L. - Misico, R.I. - Arzac, G.M. - Burton, G. - Bornmann, W.G. - Sutton, D. - Gao, J. - Boothman, D.A.
Clin. Cancer Res. 2005;11(8):3055-3064
2005

Descripción: β-Lapachone, an o-naphthoquinone, induces a novel caspase- and p53-independent apoptotic pathway dependent on NAD (P) H:quinone oxidoreductase 1 (NQO1). NQO1 reduces β-lapachone to an unstable hydroquinone that rapidly undergoes a two-step oxidation back to the parent compound, perpetuating a futile redox cycle. A deficiency or inhibition of NQO1 rendered cells resistant to beta;-lapachone. Thus, β-lapachone has great potential for the treatment of specific cancers with elevated NQO1 levels (e.g., breast, non - small cell lung, pancreatic, colon, and prostate cancers). We report the development of mono(arylimino) derivatives of β-lapachone as potential prodrugs. These derivatives are relatively nontoxic and not substrates for NQO1 when initially diluted in water. In solution, however, they undergo hydrolytic conversion to β-lapachone at rates dependent on the electron-withdrawing strength of their substituent groups and pH of the diluent. NQO1 enzyme assays, UV-visible spectrophotometry, high-performance liquid chromatography-electrospray ionization-mass spectrometry, and nuclear magnetic resonance analyses confirmed and monitored conversion of each derivative to β-lapachone. Once converted, β-lapachone derivatives caused NQO1-dependent, μ-calpain-mediated cell death in human cancer cells identical to that caused by β-lapachone. Interestingly, coadministration of N-acetyt-L-cysteine prevented derivative-induced cytotoxicity but did not affect β-lapachone lethality. Nuclear magnetic resonance analyses indicated that prevention of β-lapachone derivative cytotoxicity was the result of direct modification of these derivatives by N-acetyl-L-cysteine, preventing their conversion to β-lapachone. The use of β-lapachone mono(arylimino) prodrug derivatives, or more specifically a derivative converted in a tumor-specific manner (i.e., in the acidic local environment of the tumor tissue), should reduce normal tissue toxicity while eliciting tumor-selective cell killing by NQO1 bioactivation. © 2005 American Association for Cancer Research.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Goldszmid, R.S. - Idoyaga, J. - Bravo, A.I. - Steinman, R. - Mordoh, J. - Wainstok, R.
J. Immunol. 2003;171(11):5940-5947
2003

Descripción: Dendritic cells (DCs) are potent APCs and attractive vectors for cancer immunotherapy. Using the B16 melanoma, a poorly immunogenic experimental tumor that expresses low levels of MHC class I products, we investigated whether DCs loaded ex vivo with apoptotic tumor cells could elicit combined CD4+ and CD8+ T cell dependent, long term immunity following injection into mice. The bone marrow-derived DCs underwent maturation during overnight coculture with apoptotic melanoma cells. Following injection, DCs migrated to the draining lymph nodes comparably to control DCs at a level corresponding to ∼0.5% of the injected inoculum. Mice vaccinated with tumor-loaded DCs were protected against an intracutaneous challenge with B16, with 80% of the mice remaining tumor-free 12 wk after challenge. CD4+ and CD8+ T cells were efficiently primed in vaccinated animals, as evidenced by IFN-γ secretion after in vitro stimulation with DCs loaded with apoptotic B16 or DCs pulsed with the naturally expressed melanoma Ag, tyrosinase-related protein 2. In addition, B16 melanoma cells were recognized by immune CD8 + T cells in vitro, and cytolytic activity against tyrosinase-related protein 2180-188-pulsed target cells was observed in vivo. When either CD4+ or CD8+ T cells were depleted at the time of challenge, the protection was completely abrogated. Mice receiving a tumor challenge 10 wk after vaccination were also protected, consistent with the induction of tumor-specific memory. Therefore, DCs loaded with cells undergoing apoptotic death can prime melanoma-specific helper and CTLs and provide long term protection against a poorly immunogenic tumor in mice.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ferrari, C.C. - Aldana Marcos, H.J. - Carmanchahi, P.D. - Affanni, J.M.
Anat. Rec. 1998;252(3):325-339
1998

Descripción: The sense of olfaction in armadillos plays an important role, suggested by the great development of the nasal structures, olfactory bulbs, and related brain regions. The mammalian olfactory mucosa is a privileged site of neuronal death and regeneration during the whole life span. A detailed knowledge of its ultrastructure is convenient for gaining insight into the factors controlling those phenomena. We performed this work in species not previously studied in order to provide a firm basis for further research on those factors. No information is available on the histology and ultrastructure of the olfactory mucosa in the order Xenarthra to which armadillos belong. Samples from the endoturbinals of the armadillo Chaetophractus villosus were prepared for light and electron microscopic examination by the usual conventional means. The olfactory epithelium of Chaetophractus villosus shows the classical three types of cells: supporting cells, olfactory receptor neurons, and basal cells. The olfactory neurons and the basal cells were similar to that described in other species. Two different types of supporting cells are described. An outstanding characteristic of the supporting cells is the normal presence of abundant phagosomes, apical secretory granules, apocrine-like protrusions, and highly developed smooth endoplasmic reticulum. Apoptotic bodies are frequently found in the infranuclear cytoplasm of supporting cells. The ductular epithelium of Bowman's glands reveals secretory activity. The lamina propria shows mixed Bowman's glands. Great development of smooth endoplasmic reticulum is observed in the mucous acinar cells. Evidence for merocrine and apocrine mechanisms in the Bowman's glands is presented. The presence of apoptotic bodies and phagosomes in supporting cells suggests a participation in the cellular events induced by cell death and proliferation of the olfactory epithelium. The variety of characteristics exhibited by the supporting cells of the olfactory mucosa may contribute to a deeper understanding of their scarcely known functions.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Hirata, K. - Nakagawa, M. - Urbano, F.J. - Rosato-Siri, M.D. - Moreira, J.E. - Uchitel, O.D. - Sugimori, M. - Llinás, R.
Proc. Natl. Acad. Sci. U. S. A. 1999;96(25):14588-14593
1999

Descripción: Bath application of compound T-588, a neuroprotective agent, reduced paired-pulse and repetitive-pulse facilitation at mammalian and crustacean neuromuscular junctions. In addition, it reduced voltage-gated sodium and potassium currents in a use-dependent fashion, but had only a small effect on the presynaptic Ca 2+ conductance. By contrast, it blocked FM 1-43 vesicular uptake but not its release, in both species. Postsynaptically, T-588 reduced acetylcholine currents at the mammalian junction in a voltage-independent manner, but had no effect on the crayfish glutamate junction. All of these effects were rapidly reversible and were observed at concentrations close to the compound's acute protective level. We propose that this set of mechanisms, which reduces high-frequency synaptic transmission, is an important contributory factor in the neuroprotective action of T-588.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Romorini, L. - Coso, O.A. - Pecci, A.
Biochim. Biophys. Acta Mol. Cell Res. 2009;1793(3):496-505
2009

Descripción: Apoptosis is the predominant process controlling cell deletion during post-lactational mammary gland remodeling. The members of the Bcl-2 protein family, whose expression levels are under the control of lactogenic hormones, internally control this mechanism. Epidermal growth factor (EGF) belongs to a family of proteins that act as survival factors for mammary epithelial cells upon binding to specific membrane tyrosine kinase receptors. Expression of EGF peaks during lactation and dramatically decreases in the involuting mammary gland. Though it was suggested that the protective effect of EGF is mediated through the phosphatidylinositol-3-kinase (PI3K) or MEK/ERK kinases activities, little is known about the downstream mechanisms involved on the anti-apoptotic effect of EGF on mammary epithelial cells; particularly the identity of target genes controlling apoptosis. Here, we focused on the effect of EGF on the survival of mammary epithelial cells. We particularly aimed at the characterization of the signaling pathways that were triggered by this growth factor, impinge upon expression of Bcl-2 family members and therefore have an impact on the regulation of cell survival. We demonstrate that EGF provokes the induction of the anti-apoptotic isoform Bcl-XL and the phosphorylation and down-regulation of the pro-apoptotic protein Bad. The activation of JNK and PI3K/AKT signaling pathways promotes the induction of Bcl-XL while AKT activation also leads to Bad phosphorylation and down-regulation. This protective effect of EGF correlates mainly with the up-regulation of Bcl-XL than with the down-regulation of Bad. In fact, HC11 cells unable to express bcl-X, die even in the presence of EGF. In this context, Bcl-XL emerges as a key anti-apoptotic molecule critical for mediating EGF cell survival. © 2008 Elsevier B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

von Euw, E.M. - Barrio, M.M. - Furman, D. - Bianchini, M. - Levy, E.M. - Yee, C. - Li, Y. - Wainstok, R. - Mordoh, J.
J. Transl. Med. 2007;5
2007

Descripción: Background: In the present study, we demonstrate, in rigorous fashion, that human monocyte-derived immature dendritic cells (DCs) can efficiently cross-present tumor-associated antigens when co-cultured with a mixture of human melanoma cells rendered apoptotic/necrotic by γ irradiation (Apo-Nec cells). Methods: We evaluated the phagocytosis of Apo-Nec cells by FACS after PKH26 and PKH67 staining of DCs and Apo-Nec cells at different times of coculture. The kinetics of the process was also followed by electron microscopy. DCs maturation was also studied monitoring the expression of specific markers, migration towards specific chemokines and the ability to cross-present in vitro the native melanoma-associated Ags MelanA/MART-1 and gp100. Results: Apo-Nec cells were efficiently phagocytosed by immature DCs (iDC) (55 ± 10.5%) at 12 hs of coculture. By 12-24 hs we observed digested Apo-Nec cells inside DCs and large empty vacuoles as part of the cellular processing. Loading with Apo-Nec cells induced DCs maturation to levels achieved using LPS treatment, as measured by: i) the decrease in FITC - Dextran uptake (iDC: 81 ± 5%; DC/Apo-Nec 33 ± 12%); ii) the cell surface up-regulation of CD80, CD86, CD83, CCR7, CD40, HLA-I and HLA-II and iii) an increased in vitro migration towards MIP-3β. DC/Apo-Nec isolated from HLA-A*0201 donors were able to induce >600 pg/ml IFN-γ secretion of CTL clones specific for MelanA/MART-1 and gp100 Ags after 6 hs and up to 48 hs of coculture, demonstrating efficient cross-presentation of the native Ags. Intracellular IL-12 was detected in DC/Apo-Nec 24 hs post-coculture while IL-10 did not change. Conclusion: We conclude thatthe use of a mixture of four apoptotic/ necrotic melanoma cell lines is a suitable source of native melanoma Ags that provides maturation signals for DCs, increases migration to MIP-3β and allows Ag cross-presentation. This strategy could be exploited for vaccination of melanoma patients. © 2007 von Euw et al; licensee BioMed Central Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Bertucci, P.Y. - Quaglino, A. - Pozzi, A.G. - Kordon, E.C. - Pecci, A.
Endocrinology 2010;151(12):5730-5740
2010

Descripción: The mammary epithelium undergoes cyclical periods of cellular proliferation, differentiation, and regression. During lactation, the signal transducer and activator of transcription factor (STAT)-5A and the glucocorticoid receptor (GR) synergize to induce milk protein expression and also act as survival factors. During involution, STAT3 activation mediates epithelial cell apoptosis and mammary gland remodeling. It has been shown that the administration of glucocorticoids at weaning prevents epithelial cell death, probably by extracellular matrix breakdown prevention. Our results show that the synthetic glucocorticoid dexamethasone (DEX) modulates STAT5A and STAT3 signaling and inhibits apoptosis induction in postlactating mouse mammary glands, only when administered within the first 48 h upon cessation of suckling. DEX administration right after weaning delayed STAT5A inactivation and degradation, preserving gene expression of target genes as β-casein (bcas) and prolactin induced protein (pip). Weaning-triggered GR down-regulation is also delayed by the hormone treatment. Moreover, DEX administration delayed STAT3 activation and translocation into epithelial cells nuclei. In particular, DEX treatment impaired the increment in gene expression of signal transducer subunit gp130, normally up-regulated from lactation to involution and responsible for STAT3 activation. Therefore, the data shown herein indicate that glucocorticoids are able to modulate early involution by controlling the strong cross talk that GR, STAT5, and STAT3 pathways maintains in the mammary epithelium. Copyright © 2010 by The Endocrine Society.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Tanos, T. - Marinissen, M.J. - Leskow, F.C. - Hochbaum, D. - Martinetto, H. - Gutkind, J.S. - Coso, O.A.
J. Biol. Chem. 2005;280(19):18842-18852
2005

Descripción: Exposure to sources of UV radiation, such as sunlight, induces a number of cellular alterations that are highly dependent on its ability to affect gene expression. Among them, the rapid activation of genes coding for two subfamilies of proto-oncoproteins, Fos and Jun, which constitute the AP-1 transcription factor, plays a key role in the subsequent regulation of expression of genes involved in DNA repair, cell proliferation, cell cycle arrest, death by apoptosis, and tissue and extracellular matrix remodeling proteases. Besides being regulated at the transcriptional level, Jun and Fos transcriptional activities are also regulated by phosphorylation as a result of the activation of intracellular signaling cascades. In this regard, the phosphorylation of c-Jun by UV-induced JNK has been readily documented, whereas a role for Fos proteins in UV-mediated responses and the identification of Fos-activating kinases has remained elusive. Here we identify p38 MAPKs as proteins that can associate with c-Fos and phosphorylate its transactivation domain both in vitro and in vivo. This phosphorylation is transduced into changes in its transcriptional ability as p38-activated c-Fos enhances AP1-driven gene expression. Our findings indicate that as a consequence of the activation of stress pathways induced by UV light, endogenous c-Fos becomes a substrate of p38 MAPKs and, for the first time, provide evidence that support a critical role for p38 MAPKs in mediating stress-induced c-Fos phosphorylation and gene transcription activation. Using a specific pharmacological inhibitor for p38α and -β, we found that most likely these two isoforms mediate UV-induced c-Fos phosphorylation in vivo. Thus, these newly described pathways act concomitantly with the activation of c-Jun by JNK/MAPKs, thereby contributing to the complexity of AP1-driven gene transcription regulation.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Parborell, F. - Abramovich, D. - Tesone, M.
Biol. Reprod. 2008;78(3):506-513
2008

Descripción: The angiopoietin (ANGPT) receptor (TEK) system plays a crucial role in blood vessel development and regression. To date, no reports have addressed the actions of the anti-ANGPT1 antibody on gonadotropin-stimulated follicular development and atresia in the ovary. Therefore, in this study we specifically investigated whether ANGPT1 plays a critical intraovarian survival role for gonadotropin-dependent folliculogenesis. In particular, we examined the effect of local administration of anti-ANGPT1 antibody on follicular development, apoptosis, and expression of BCL2 protein family members (BAX, BCL2, and BCL2L1), TNFRSF6, and FASLG in ovarian follicles from prepubertal eCG-treated rats. The inhibition of ANGPT1 caused an increase in the number of atretic follicles and a decrease in the number of both antral follicles (AFs) and preovulatory follicles in gonadotropin-treated rat ovaries. Taking into account that follicular atresia is mediated by apoptosis, we analyzed the effect of the antibody against ANGPT1 on programmed cell death. The inhibition of the action of ANGPT1 caused an increase both in the number of apoptotic granulosa cells in AFs and in the spontaneous DNA fragmentation of AFs cultured in serum-free medium. Besides, AFs obtained from rats treated with intraovarian antibodies against ANGPT1 showed both a decrease in BCL2 and an increase in BAX protein levels. Moreover, a reduction in the BCL2L1L/BCL2L1S ratio was observed in this group, with a reduction of BCL2L1L greater than that of BCL2L1S, thus showing that the expression of these antiapoptotic proteins is lower in follicles from treated rats than in those from untreated ones. Our findings suggest that the inhibition of ANGPT1 activity causes an increase in the number of atretic follicles mediated by ovarian apoptosis through an imbalance in the ratio of antiapoptotic to proapoptotic proteins. This could take place through a paracrine effect on granulosa cells mediated by the TEK receptor in theca cells. Therefore, these data clearly indicate that ANGPT1 is necessary for follicular development induced by gonadotropins. © 2008 by the Society for the Study of Reproduction, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

< Anteriores
(Resultados 21 - 22)