por que contenga las palabras

Busqueda avanzada

9 documentos corresponden a la consulta.
Palabras contadas: coli: 105, e: 253
Almeida, A. - Catone, M.V. - Rhodius, V.A. - Gross, C.A. - Pettinari, M.J.
Appl. Environ. Microbiol. 2011;77(18):6622-6629
2011

Descripción: Phasins (PhaP) are proteins normally associated with granules of poly(3-hydroxybutyrate) (PHB), a biodegradable polymer accumulated by many bacteria as a reserve molecule. These proteins enhance growth and polymer production in natural and recombinant PHB producers. It has been shown that the production of PHB causes stress in recombinant Escherichia coli, revealed by an increase in the concentrations of several heat stress proteins. In this work, quantitative reverse transcription (qRT)-PCR analysis was used to study the effect of PHB accumulation, and that of PhaP from Azotobacter sp. strain FA8, on the expression of stress-related genes in PHB-producing E. coli. While PHB accumulation was found to increase the transcription of dnaK and ibpA, the expression of these genes and of groES, groEL, rpoH, dps, and yfiD was reduced, when PhaP was coexpressed, to levels even lower than those detected in the non-PHB-accumulating control. These results demonstrated the protective role of PhaP in PHB-synthesizing E. coli and linked the effects of the protein to the expression of stress-related genes, especially ibpA. The effect of PhaP was also analyzed in non-PHBsynthesizing strains, showing that expression of this heterologous protein has an unexpected protective effect in E. coli, under both normal and stress conditions, resulting in increased growth and higher resistance to both heat shock and superoxide stress by paraquat. In addition, PhaP expression was shown to reduce RpoH protein levels during heat shock, probably by reducing or titrating the levels of misfolded proteins. © 2011, American Society for Microbiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Bidart, G.N. - Ruiz, J.A. - de Almeida, A. - Méndez, B.S. - Nikel, P.I.
Appl. Environ. Microbiol. 2012;78(24):8784-8794
2012

Descripción: Bioprocesses conducted under conditions with restricted O2 supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative anaerobe Escherichia coli has elaborate sensing and signal transduction mechanisms for redox control in response to the availability of O2 and other electron acceptors. The ArcBA two-component system consists of ArcB, a membrane-associated sensor kinase, and ArcA, the cognate response regulator. The tripartite hybrid kinase ArcB possesses a transmembrane, a PAS, a primary transmitter (H1), a receiver (D1), and a phosphotransfer (H2) domain. Metabolic fluxes were compared under anoxic conditions in a wild-type E. coli strain, its ΔarcB derivative, and two partial arcB deletion mutants in which ArcB lacked either the H1 domain or the PAS-H1-D1 domains. These analyses revealed that elimination of different segments in ArcB determines a distinctive distribution of D-glucose catabolic fluxes, different from that observed in the ΔarcB background. Metabolite profiles, enzyme activity levels, and gene expression patterns were also investigated in these strains. Relevant alterations were observed at the P-enol-pyruvate/pyruvate and acetyl coenzyme A metabolic nodes, and the formation of reduced fermentation metabolites, such as succinate, D-lactate, and ethanol, was favored in the mutant strains to different extents compared to the wild-type strain. These phenotypic traits were associated with altered levels of the enzymatic activities operating at these nodes, as well as with elevated NADH/NAD+ ratios. Thus, targeted modification of global regulators to obtain different metabolic flux distributions under anoxic conditions is emerging as an attractive tool for metabolic engineering purposes. © 2012, American Society for Microbiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Cataldi, A.A. - Algranati, I.D.
J. BACTERIOL. 1989;171(4):1998-2002
1989

Descripción: The growth rate of several polyamine-deficient mutants of Escherichia coli was very low in minimal medium and increased markedly upon the addition of putrescine, spermidine, arginine, citrulline, or argininosuccinic acid. The endogenous content of polyamines was not significantly altered by the supplementation of polyamine-starved cultures with arginine or its precursors. In contrast, these compounds as well as putrescine or spermidine caused a 40-fold reduction in intracellular ornithine levels when added to polyamine-depleted bacteria. In vivo experiments with radioactive glutamic acid as a precursor and in vitro assay of the related enzymes showed that the decrease in ornithine levels was due to the inhibition of its biosynthesis rather than to an increase in its conversion to citrulline or Δ1-pyrroline-5-carboxylic acid and proline. High endogenous concentrations of ornithine were toxic for the E. coli strains tested. The described results indicate that the stimulatory effect of putrescine and spermidine on the growth of certain polyamine-starved bacteria may be partially due to the control of ornithine biosynthesis by polyamines.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ruiz, J.A. - Fernández, R.O. - Nikel, P.I. - Méndez, B.S. - Pettinari, M.J.
FEMS Microbiol. Lett. 2006;258(1):55-60
2006

Descripción: arcA codes for a central regulator in Escherichia coli that responds to redox conditions of growth. Mutations in this gene, originally named dye, confer sensitivity to toluidine blue and other redox dyes. However, the molecular basis for the dye-sensitive phenotype has not been elucidated. In this work, we show that toluidine blue redirects electrons to O2 and causes an increase in the generation of reactive O2 species (ROS). We also demonstrate that synthesis of poly (3-hydroxybutyrate) suppresses the Dye phenotype in E. coli recombinants, as the capacity to synthesize the polymer reduces sensitivity to toluidine blue, O2 consumption and ROS production levels. © 2006 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Nikel, P.I. - Ramirez, M.C. - Pettinari, M.J. - Méndez, B.S. - Galvagno, M.A.
J. Appl. Microbiol. 2010;109(2):492-504
2010

Descripción: Aims: Analysis of the physiology and metabolism of Escherichia coli arcA and creC mutants expressing a bifunctional alcohol-acetaldehyde dehydrogenase from Leuconostoc mesenteroides growing on glycerol under oxygen-restricted conditions. The effect of an ldhA mutation and different growth medium modifications was also assessed. Methods and Results: Expression of adhE in E. coli CT1061 [arcA creC(Con)] resulted in a 1·4-fold enhancement in ethanol synthesis. Significant amounts of lactate were produced during micro-oxic cultures and strain CT1061LE, in which fermentative lactate dehydrogenase was deleted, produced up to 6·5 ± 0·3 g l-1 ethanol in 48 h. Escherichia coli CT1061LE derivatives resistant to >25 g l-1 ethanol were obtained by metabolic evolution. Pyruvate and acetaldehyde addition significantly increased both biomass and ethanol concentrations, probably by overcoming acetyl-coenzyme A (CoA) shortage. Yeast extract also promoted growth and ethanol synthesis, and this positive effect was mainly attributable to its vitamin content. Two-stage bioreactor cultures were conducted in a minimal medium containing 100 μg l-1 calcium d-pantothenate to evaluate oxic acetyl-CoA synthesis followed by a switch into fermentative conditions. Ethanol reached 15·4 ± 0·9 g l-1 with a volumetric productivity of 0·34 ± 0·02 g l-1 h-1. Conclusions: Escherichia coli responded to adhE over-expression by funnelling carbon and reducing equivalents into a highly reduced metabolite, ethanol. Acetyl-CoA played a key role in micro-oxic ethanol synthesis and growth. Significance and Impact of the Study: Insight into the micro-oxic metabolism of E. coli growing on glycerol is essential for the development of efficient industrial processes for reduced biochemicals production from this substrate, with special relevance to biofuels synthesis. © 2010 The Society for Applied Microbiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Nikel, P.I. - De Almeida, A. - Melillo, E.C. - Galvagno, M.A. - Pettinari, M.J.
Appl. Environ. Microbiol. 2006;72(6):3949-3954
2006

Descripción: A recombinant E. coli strain (K24K) was constructed and evaluated For poly(3-hydroxybutyrate) (PHB) production from whey and corn steep liquor as main carbon and nitrogen sources. This strain bears the pha biosynthetic genes from Azotobacter sp. strain FA8 expressed from a T5 promoter under the control of the lactose operator. K24K does not produce the lactose repressor, ensuring constitutive expression of genes involved in lactose transport and utilization. PHB was efficiently produced by the recombinant strain grown aerobically in fed-batch cultures in a laboratory scale bioreactor on a semisynthetic medium supplemented with the agroindustrial by-products. After 24 h, cells accumulated PHB to 72.9% of their cell dry weight, reaching a volumetric productivity of 2.13 g PHB per liter per hour. Physical analysis of PHB recovered from the recombinants showed that its molecular weight was similar to that of PHB produced by Azotobacter sp. strain FA8 and higher than that of the polymer from Cupriavidus necator and that its glass transition temperature was approximately 20°C higher than those of PHBs from the natural producer strains. Copyright © 2006, American Society for Microbiology. All Rights Reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Sala, C.D. - Soler-Bistué, A.J.C. - Korprapun, L. - Zorreguieta, A. - Tolmasky, M.E.
PLoS ONE 2012;7(10)
2012

Descripción: EGS (external guide sequence) technology is a promising approach to designing new antibiotics. EGSs are short antisense oligoribonucleotides that induce RNase P-mediated cleavage of a target RNA by forming a precursor tRNA-like complex. The ftsZ mRNA secondary structure was modeled and EGSs complementary to two regions with high probability of being suitable targets were designed. In vitro reactions showed that EGSs targeting these regions bound ftsZ mRNA and elicited RNase P-mediated cleavage of ftsZ mRNA. A recombinant plasmid, pEGSb1, coding for an EGS that targets region "b" under the control of the T7 promoter was generated. Upon introduction of this plasmid into Escherichia coli BL21(DE3)(pLysS) the transformant strain formed filaments when expression of the EGS was induced. Concomitantly, E. coli harboring pEGSb1 showed a modest but significant inhibition of growth when synthesis of the EGSb1 was induced. Our results indicate that EGS technology could be a viable strategy to generate new antimicrobials targeting ftsZ. © 2012 Sala et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Soler Bistué, A.J.C. - Martín, F.A. - Vozza, N. - Ha, H. - Joaquín, J.C. - Zorreguieta, A. - Tolmasky, M.E.
Proc. Natl. Acad. Sci. U. S. A. 2009;106(32):13230-13235
2009

Descripción: Inhibition of bacterial gene expression by RNase P-directed cleavage is a promising strategy for the development of antibiotics and pharmacological agents that prevent expression of antibiotic resistance. The rise in multiresistant bacteria harboring AAC(6′)-Ib has seriously limited the effectiveness of amikacin and other aminoglycosides. We have recently shown that recombinant plasmids coding for external guide sequences (EGS), short antisense oligoribonucleotides (ORN) that elicit RNase P-mediated cleavage of a target mRNA, induce inhibition of expression of aac(6′)-Ib and concomitantly induce a significant decrease in the levels of resistance to amikacin. However, since ORN are rapidly degraded by nucleases, development of a viable RNase P-based antisense technology requires the design of nuclease resistant RNA analog EGSs. We have assayed a variety of ORN analogs of which selected LNA/DNA co-oligomers elicited RNase P-mediated cleavage of mRNA in vitro. Although we found an ideal configuration of LNA/DNA residues, there seems not to be a correlation between number of LNA substitutions and level of activity. Exogenous administration of as low as 50 nM of an LNA/DNA co-oligomer to the hyperpermeable E. coli AS19 harboring the aac(6′)-Ib inhibited growth in the presence of amikacin. Our experiments strongly suggest an RNase P-mediated mechanism in the observed antisense effect.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Posadas, D.M. - Martín, F.A. - Sabio Y Garcïa, J.V. - Spera, J.M. - Delpino, M.V. - Baldi, P. - Campos, E. - Cravero, S.L. - Zorreguieta, A.
Infect. Immun. 2007;75(1):379-389
2007

Descripción: Brucella spp., like other pathogens, must cope with the environment of diverse host niches during the infection process. In doing this, pathogens evolved different type of transport systems to help them survive and disseminate within the host. Members of the TolC family have been shown to be involved in the export of chemically diverse molecules ranging from large protein toxins to small toxic compounds. The role of proteins from the TolC family in Brucella and other α-2-proteobacteria has been explored little. The gene encoding the unique member of the TolC family from Brucella suis (BepC) was cloned and expressed in an Escherichia coli mutant disrupted in the gene encoding TolC, which has the peculiarity of being involved in diverse transport functions. BepC fully complemented the resistance to drugs such as chloramphenicol and acriflavine but was incapable of restoring hemolysin secretion in the tolC mutant of & coli. An insertional mutation in the bepC gene strongly affected the resistance phenotype of B. suis to bile salts and toxic chemicals such as ethidium bromide and rhodamine and significantly decreased the resistance to antibiotics such as erythromycin, ampicillin, tetracycline, and norfloxacin. Moreover, the B. suis bepC mutant was attenuated in the mouse model of infection. Taken together, these results suggest that BepC-dependent efflux processes of toxic compounds contribute to B. suis survival inside the host. Copyright © 2007, American Society for Microbiology. All Rights Reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo