por que contenga las palabras

Busqueda avanzada

10 documentos corresponden a la consulta.
Palabras contadas: developmental: 81, genes: 219
Mensch, J. - Lavagnino, N. - Carreira, V.P. - Massaldi, A. - Hasson, E. - Fanara, J.J.
BMC Dev. Biol. 2008;8
2008

Descripción: Background. Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait. Results. We analyzed 179 co-isogenic single P[GT1]-element insertion lines of Drosophila melanogaster to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes Merlin and Karl showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic P-element insertion free line). In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes. Conclusion. We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in Drosophila. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive to temperature during development. Taken together, our results stress the need to take into account the effect of environmental variation and the dynamics of gene interactions on the genetic architecture of this complex life-history trait. © 2008 Mensch et al; licensee BioMed Central Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Frankel, N.
Dev. Dyn. 2012;241(12):1857-1866
2012

Descripción: Genomes contain the necessary information to ensure that genes are expressed in the right place, at the right time, and with the proper rate. Metazoan developmental genes often possess long stretches of DNA flanking their coding sequences and/or large introns which contain elements that influence gene expression. Most of these regulatory elements are relatively small and can be studied in isolation. For example, transcriptional enhancers, the elements that generate the expression pattern of a gene, have been traditionally studied with reporter constructs in transgenic animals. These studies have provided and will provide invaluable insights into enhancer evolution and function. However, this experimental approach has its limits; often, enhancer elements do not faithfully recapitulate native expression patterns. This fact suggests that additional information in cis-regulatory regions modulates the activity of enhancers and other regulatory elements. Indeed, recent studies have revealed novel functional aspects at the level of whole cis-regulatory regions. First, the discovery of "shadow enhancers." Second, the ubiquitous interactions between cis-regulatory elements. Third, the notion that some cis-regulatory regions may not function in a modular manner. Last, the effect of chromatin conformation on cis-regulatory activity. In this article, I describe these recent findings and discuss open questions in the field. © 2012 Wiley Periodicals, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Centanin, L. - Ratcliffe, P.J. - Wappner, P.
EMBO Rep. 2005;6(11):1070-1075
2005

Descripción: Hypoxia-Inducible Factor (HIF) prolyl hydroxylase domains (PHDs) have been proposed to act as sensors that have an important role in oxygen homeostasis. In the presence of oxygen, they hydroxylate two specific prolyl residues in HIF-α polypeptides, thereby promoting their proteasomal degradation. So far, however, the developmental consequences of the inactivation of PHDs in higher metazoans have not been reported. Here, we describe novel loss-of-function mutants of fatiga, the gene encoding the Drosophila PHD oxygen sensor, which manifest growth defects and lethality. We also report a null mutation in dHIF-α/sima, which is unable to adapt to hypoxia but is fully viable in normoxic conditions. Strikingly, loss-of-function mutations of sima rescued the developmental defects observed in fatiga mutants and enabled survival to adulthood. These results indicate that the main functions of Fatiga in development, including control of cell size, involve the regulation of dHIF/Sima. © 2005 European Molecular Biology Organization.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ghiglione, H.O. - Gonzalez, F.G. - Serrago, R. - Maldonado, S.B. - Chilcott, C. - Curá, J.A. - Miralles, D.J. - Zhu, T. - Casal, J.J.
Plant J. 2008;55(6):1010-1024
2008

Descripción: The wheat spikelet meristem differentiates into up to 12 floret primordia, but many of them fail to reach the fertile floret stage at anthesis. We combined microarray, biochemical and anatomical studies to investigate floret development in wheat plants grown in the field under short or long days (short days extended with low-fluence light) after all the spikelets had already differentiated. Long days accelerated spike and floret development and greening, and the expression of genes involved in photosynthesis, photoprotection and carbohydrate metabolism. These changes started while the spike was in the light-depleted environment created by the surrounding leaf sheaths. Cell division ceased in the tissues of distal florets, which interrupted their normal developmental progression and initiated autophagy, thus decreasing the number of fertile florets at anthesis. A massive decrease in the expression of genes involved in cell proliferation, a decrease in soluble carbohydrate levels, and an increase in the expression of genes involved in programmed cell death accompanied anatomical signs of cell death, and these effects were stronger under long days. We propose a model in which developmentally generated sugar starvation triggers floret autophagy, and long days intensify these processes due to the increased carbohydrate consumption caused by the accelerated plant development. © 2008 The Authors.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Fernández, P. - Paniego, N. - Lew, S. - Hopp, H.E. - Heinz, R.A.
BMC Genomics 2003;4
2003

Descripción: Background: Subtractive hybridization methods are valuable tools for identifying differentially regulated genes in a given tissue avoiding redundant sequencing of clones representing the same expressed genes, maximizing detection of low abundant transcripts and thus, affecting the efficiency and cost effectiveness of small scale cDNA sequencing projects aimed to the specific identification of useful genes for breeding purposes. The objective of this work is to evaluate alternative strategies to high-throughput sequencing projects for the identification of novel genes differentially expressed in sunflower as a source of organ-specific genetic markers that can be functionally associated to important traits. Results: Differential organ-specific ESTs were generated from leaf, stem, root and flower bud at two developmental stages (R1 and R4). The use of different sources of RNA as tester and driver cDNA for the construction of differential libraries was evaluated as a tool for detection of rare or low abundant transcripts. Organ-specificity ranged from 75 to 100% of non-redundant sequences in the different cDNA libraries. Sequence redundancy varied according to the target and driver cDNA used in each case. The R4 flower cDNA library was the less redundant library with 62% of unique sequences. Out of a total of 919 sequences that were edited and annotated, 318 were non-redundant sequences. Comparison against sequences in public databases showed that 60% of non-redundant sequences showed significant similarity to known sequences. The number of predicted novel genes varied among the different cDNA libraries, ranging from 56% in the R4 flower to 16 % in the R1 flower bud library. Comparison with sunflower ESTs on public databases showed that 197 of non-redundant sequences (60%) did not exhibit significant similarity to previously reported sunflower ESTs. This approach helped to successfully isolate a significant number of new reported sequences putatively related to responses to important agronomic traits and key regulatory and physiological genes. Conclusions: The application of suppressed subtracted hybridization technology not only enabled the cost effective isolation of differentially expressed sequences but it also allowed the identification of novel sequences in sunflower from a relative small number of analyzed sequences when compared to major sequencing projects. © 2003 Fernández et al; licensee BioMed Central Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Fernandez, P. - Di Rienzo, J. - Fernandez, L. - Hopp, H.E. - Paniego, N. - Heinz, R.A.
BMC Plant Biol. 2008;8
2008

Descripción: Background. Considering that sunflower production is expanding to arid regions, tolerance to abiotic stresses as drought, low temperatures and salinity arises as one of the main constrains nowadays. Differential organ-specific sunflower ESTs (expressed sequence tags) were previously generated by a subtractive hybridization method that included a considerable number of putative abiotic stress associated sequences. The objective of this work is to analyze concerted gene expression profiles of organ-specific ESTs by fluorescence microarray assay, in response to high sodium chloride concentration and chilling treatments with the aim to identify and follow up candidate genes for early responses to abiotic stress in sunflower. Results. Abiotic-related expressed genes were the target of this characterization through a gene expression analysis using an organ-specific cDNA fluorescence microarray approach in response to high salinity and low temperatures. The experiment included three independent replicates from leaf samples. We analyzed 317 unigenes previously isolated from differential organ-specific cDNA libraries from leaf, stem and flower at R1 and R4 developmental stage. A statistical analysis based on mean comparison by ANOVA and ordination by Principal Component Analysis allowed the detection of 80 candidate genes for either salinity and/or chilling stresses. Out of them, 50 genes were up or down regulated under both stresses, supporting common regulatory mechanisms and general responses to chilling and salinity. Interestingly 15 and 12 sequences were up regulated or down regulated specifically in one stress but not in the other, respectively. These genes are potentially involved in different regulatory mechanisms including transcription/translation/protein degradation/protein folding/ROS production or ROS-scavenging. Differential gene expression patterns were confirmed by qRT-PCR for 12.5% of the microarray candidate sequences. Conclusion. Eighty genes isolated from organ-specific cDNA libraries were identified as candidate genes for sunflower early response to low temperatures and salinity. Microarray profiling of chilling and NaCl-treated sunflower leaves revealed dynamic changes in transcript abundance, including transcription factors, defense/stress related proteins, and effectors of homeostasis, all of which highlight the complexity of both stress responses. This study not only allowed the identification of common transcriptional changes to both stress conditions but also lead to the detection of stress-specific genes not previously reported in sunflower. This is the first organ-specific cDNA fluorescence microarray study addressing a simultaneous evaluation of concerted transcriptional changes in response to chilling and salinity stress in cultivated sunflower.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Rodríguez, M.V. - Mendiondo, G.M. - Maskin, L. - Gudesblat, G.E. - Iusem, N.D. - Benech-Arnold, R.L.
Ann. Bot. 2009;104(5):975-985
2009

Descripción: Background and AimsPre-harvest sprouting susceptibility in grain sorghum (Sorghum bicolor) is related to low seed dormancy and reduced embryo sensitivity to inhibition of germination by abscisic acid (ABA). Intra-specific variability for pre-harvest sprouting might involve differential regulation of ABA signalling genes.MethodsSorghum genes encoding homologues for ABA signalling components from other species (ABI5, ABI4, VP1, ABI1 and PKABA1) were studied at the transcriptional and protein level (ABI5) during grain imbibition for two sorghum lines with contrasting sprouting phenotypes and in response to hormones.Key ResultsTranscript levels of these genes and protein levels of ABI5 were higher in imbibed immature caryopses of the more dormant line. Dormancy loss was related to lower transcript levels of these genes and lower ABI5 protein levels in both genotypes. Exogenous ABA inhibited germination of isolated embryos but failed to prevent ABI5 rapid decrease supporting a role for the seed coat in regulating ABI5 levels.ConclusionsSeveral genes involved in ABA signalling are regulated differently in imbibed caryopses from two sorghum lines with contrasting pre-harvest sprouting response before - but not after - physiological maturity. A role for ABI5 in the expression of dormancy during grain development is discussed.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Franchini, L.F. - López-Leal, R. - Nasif, S. - Beati, P. - Gelman, D.M. - Low, M.J. - De Souza, F.J.S. - Rubinstein, M.
Proc. Natl. Acad. Sci. U. S. A. 2011;108(37):15270-15275
2011

Descripción: The proopiomelanocortin gene (POMC) is expressed in a group of neurons present in the arcuate nucleus of the hypothalamus. Neuron-specific POMC expression in mammals is conveyed by two distal enhancers, named nPE1 and nPE2. Previous transgenic mouse studies showed that nPE1 and nPE2 independently drive reporter gene expression to POMC neurons. Here, we investigated the evolutionary mechanisms that shaped not one but two neuron- specific POMC enhancers and tested whether nPE1 and nPE2 drive identical or complementary spatiotemporal expression patterns. Sequence comparison among representative genomes of most vertebrate classes and mammalian orders showed that nPE1 is a placental novelty. Using in silico paleogenomics we found that nPE1 originated from the exaptation of a mammalian- apparent LTR retrotransposon sometime between the metatherian/ eutherian split (147 Mya) and the placental mammal radiation (≈90 Mya). Thus, the evolutionary origin of nPE1 differs, in kind and time, from that previously demonstrated for nPE2, which was exapted from a CORE-short interspersed nucleotide element (SINE) retroposon before the origin of prototherians, 166 Mya. Transgenic mice expressing the fluorescent markers tomato and EGFP driven by nPE1 or nPE2, respectively, demonstrated coexpression of both reporter genes along the entire arcuate nucleus. The onset of reporter gene expression guided by nPE1 and nPE2 was also identical and coincidental with the onset of Pomc expression in the presumptive mouse diencephalon. Thus, the independent exaptation of two unrelated retroposons into functional analogs regulating neuronal POMC expression constitutes an authentic example of convergent molecular evolution of cell-specific enhancers.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ocampo, J. - Nuñez, L.F. - Silva, F. - Pereyra, E. - Moreno, S. - Garre, V. - Rossi, S.
Eukaryotic Cell 2009;8(7):933-944
2009

Descripción: The cyclic AMP (cAMP)-dependent protein kinase A (PKA) signaling pathway plays a role in regulating development, growth, and virulence in a number of fungi. To determine whether PKA plays a similar function in zygomycete fungi, a mutant of Mucor circinelloides was generated that lacks pkaR1, one of the regulatory subunits of PKA. The mutant showed a reduction in growth and alterations in germination rates, cell volume, germ tube length, and asexual sporulation. The lack of pkaR1 gene resulted in a highly decreased, but not null, cAMP binding activity and in a protein kinase activity that was still dependent on cAMP, although with a higher -/+ cAMP activity ratio, suggesting the existence of other cAMP binding activities. Consequently, three proteins analogous to pkaR1 were predicted from the recently sequenced genome of M. circinelloides and were named pkaR2, pkaR3, and pkaR4. Two of the proteins, pkaR2 and pkaR3, with cAMP binding activity were isolated from the wild-type strain and identified by mass spectrometry. The expression of all genes was detected at the mRNA level by semiquantitative reverse transcription-PCR, and they showed a differential expression at different developmental stages. This is the first time that a fungus is reported to have more than one gene encoding the regulatory subunit of PKA. © 2009, American Society for Microbiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Bazzini, A.A. - Almasia, N.I. - Manacorda, C.A. - Mongelli, V.C. - Conti, G. - Maroniche, G.A. - Rodriguez, M.C. - Distéfano, A.J. - Hopp, H.E. - Del Vas, M. - Asurmendi, S.
BMC Plant Biol. 2009;9
2009

Descripción: Background. Micro RNAs (miRs) constitute a large group of endogenous small RNAs that have crucial roles in many important plant functions. Virus infection and transgenic expression of viral proteins alter accumulation and activity of miRs and so far, most of the published evidence involves post-transcriptional regulations. Results. Using transgenic plants expressing a reporter gene under the promoter region of a characterized miR (P-miR164a), we monitored the reporter gene expression in different tissues and during Arabidopsis development. Strong expression was detected in both vascular tissues and hydathodes. P-miR164a activity was developmentally regulated in plants with a maximum expression at stages 1.12 to 5.1 (according to Boyes, 2001) along the transition from vegetative to reproductive growth. Upon quantification of P-miR164a-derived GUS activity after Tobacco mosaic virus Cg or Oilseed rape mosaic virus (ORMV) infection and after hormone treatments, we demonstrated that ORMV and gibberellic acid elevated P-miR164a activity. Accordingly, total mature miR164, precursor of miR164a and CUC1 mRNA (a miR164 target) levels increased after virus infection and interestingly the most severe virus (ORMV) produced the strongest promoter induction. Conclusion. This work shows for the first time that the alteration of miR pathways produced by viral infections possesses a transcriptional component. In addition, the degree of miR alteration correlates with virus severity since a more severe virus produces a stronger P-miR164a induction. © 2009 Bazzini et al; licensee BioMed Central Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo