por que contenga las palabras

Busqueda avanzada

9 documentos corresponden a la consulta.
Palabras contadas: ropes: 27, flux: 151
Török, T. - Chandra, R. - Pariat, E. - Démoulin, P. - Schmieder, B. - Aulanier, G. - Linton, M.G. - Mandrini, C.H.
Astrophys. J. 2011;728(1)
2011

Descripción: Hα observations of solar active region NOAA 10501 on 2003 November 20 revealed a very uncommon dynamic process: during the development of a nearby flare, two adjacent elongated filaments approached each other, merged at their middle sections, and separated again, thereby forming stable configurations with new footpoint connections. The observed dynamic pattern is indicative of "slingshot" reconnection between two magnetic flux ropes. We test this scenario by means of a three-dimensional zero β magnetohydrodynamic simulation, using a modified version of the coronal flux rope model by Titov and Démoulin as the initial condition for the magnetic field. To this end, a configuration is constructed that contains two flux ropes which are oriented side-by-side and are embedded in an ambient potential field. The choice of the magnetic orientation of the flux ropes and of the topology of the potential field is guided by the observations. Quasi-static boundary flows are then imposed to bring the middle sections of the flux ropes into contact. After sufficient driving, the ropes reconnect and two new flux ropes are formed, which now connect the former adjacent flux rope footpoints of opposite polarity. The corresponding evolution of filament material is modeled by calculating the positions of field line dips at all times. The dips follow the morphological evolution of the flux ropes, in qualitative agreement with the observed filaments. © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Démoulin, P. - Dasso, S.
Astron. Astrophys. 2009;498(2):551-566
2009

Descripción: Context. A magnetic cloud (MC) is a magnetic flux rope in the solar wind (SW), which, at 1 AU, is observed ∼2-5 days after its expulsion from the Sun. The associated solar eruption is observed as a coronal mass ejection (CME).Aims. Both the in situ observations of plasma velocity distribution and the increase in their size with solar distance demonstrate that MCs are strongly expanding structures. The aim of this work is to find the main causes of this expansion and to derive a model to explain the plasma velocity profiles typically observed inside MCs.Methods. We model the flux rope evolution as a series of force-free field states with two extreme limits: (a) ideal magneto-hydrodynamics (MHD) and (b) minimization of the magnetic energy with conserved magnetic helicity. We consider cylindrical flux ropes to reduce the problem to the integration of ordinary differential equations. This allows us to explore a wide variety of magnetic fields at a broad range of distances to the Sun.Results. We demonstrate that the rapid decrease in the total SW pressure with solar distance is the main driver of the flux-rope radial expansion. Other effects, such as the internal over-pressure, the radial distribution, and the amount of twist within the flux rope have a much weaker influence on the expansion. We demonstrate that any force-free flux rope will have a self-similar expansion if its total boundary pressure evolves as the inverse of its length to the fourth power. With the total pressure gradient observed in the SW, the radial expansion of flux ropes is close to self-similar with a nearly linear radial velocity profile across the flux rope, as observed. Moreover, we show that the expansion rate is proportional to the radius and to the global velocity away from the Sun.Conclusions. The simple and universal law found for the radial expansion of flux ropes in the SW predicts the typical size, magnetic structure, and radial velocity of MCs at various solar distances. © 2009 ESO.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Démoulin, P. - Dasso, S. - Janvier, M.
Astron. Astrophys. 2013;550
2013

Descripción: Context. Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs). One property of MCs is the presence of a magnetic flux rope. Is the difference between ICMEs with and without MCs intrinsic or rather due to an observational bias? Aims. As the spacecraft has no relationship with the MC trajectory, the frequency distribution of MCs versus the spacecraft distance to the MCs' axis is expected to be approximately flat. However, Lepping & Wu (2010, Ann. Geophys., 28, 1539) confirmed that it is a strongly decreasing function of the estimated impact parameter. Is a flux rope more frequently undetected for larger impact parameter? Methods. In order to answer the questions above, we explore the parameter space of flux rope models, especially the aspect ratio, boundary shape, and current distribution. The proposed models are analyzed as MCs by fitting a circular linear force-free field to the magnetic field computed along simulated crossings. Results. We find that the distribution of the twist within the flux rope and the non-detection due to too low field rotation angle or magnitude only weakly affect the expected frequency distribution of MCs versus impact parameter. However, the estimated impact parameter is increasingly biased to lower values as the flux rope cross section is more elongated orthogonally to the crossing trajectory. The observed distribution of MCs is a natural consequence of a flux rope cross section flattened on average by a factor 2 to 3 depending on the magnetic twist profile. However, the faster MCs at 1 AU, with V > 550 km s-1, present an almost uniform distribution of MCs vs. impact parameter, which is consistent with round-shaped flux ropes, in contrast with the slower ones. Conclusions. We conclude that the sampling of MCs at various distances from the axis does not significantly affect their detection. The large part of ICMEs without MCs could be due to a too strict criteria for MCs or to the fact that these ICMEs are encountered outside their flux rope or near the leg region, or they do not contain a flux rope. © 2013 ESO.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Nakwacki, M.S. - Dasso, S. - Démoulin, P. - Mandrini, C.H. - Gulisano, A.M.
Astron. Astrophys. 2011;535
2011

Descripción: Context. Significant quantities of magnetized plasma are transported from the Sun to the interstellar medium via interplanetary coronal mass ejections (ICMEs). Magnetic clouds (MCs) are a particular subset of ICMEs, forming large-scale magnetic flux ropes. Their evolution in the solar wind is complex and mainly determined by their own magnetic forces and the interaction with the surrounding solar wind. Aims. Magnetic clouds are strongly affected by the surrounding environment as they evolve in the solar wind. We study expansion of MCs, its consequent decrease in magnetic field intensity and mass density, and the possible evolution of the so-called global ideal-MHD invariants. Methods. In this work we analyze the evolution of a particular MC (observed in March 1998) using in situ observations made by two spacecraft approximately aligned with the Sun, the first one at 1 AU from the Sun and the second one at 5.4 AU. We describe the magnetic configuration of the MC using different models and compute relevant global quantities (magnetic fluxes, helicity, and energy) at both heliodistances. We also tracked this structure back to the Sun, to find out its solar source. Results. We find that the flux rope is significantly distorted at 5.4 AU. From the observed decay of magnetic field and mass density, we quantify how anisotropic is the expansion and the consequent deformation of the flux rope in favor of a cross section with an aspect ratio at 5.4 AU of ≈ 1.6 (larger in the direction perpendicular to the radial direction from the Sun). We quantify the ideal-MHD invariants and magnetic energy at both locations, and find that invariants are almost conserved, while the magnetic energy decays as expected with the expansion rate found. Conclusions. The use of MHD invariants to link structures at the Sun and the interplanetary medium is supported by the results of this multi-spacecraft study. We also conclude that the local dimensionless expansion rate, which is computed from the velocity profile observed by a single-spacecraft, is very accurate for predicting the evolution of flux ropes in the solar wind. © 2011 ESO.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Démoulin, P. - Dasso, S.
Astron. Astrophys. 2009;507(2):969-980
2009

Descripción: Context. Magnetic clouds (MCs) are formed by magnetic flux ropes that are ejected from the Sun as coronal mass ejections. These structures generally have low plasma beta and travel through the interplanetary medium interacting with the surrounding solar wind. Thus, the dynamical evolution of the internal magnetic structure of a MC is a consequence of both the conditions of its environment and of its own dynamical laws, which are mainly dominated by magnetic forces.Aims. With in-situ observations the magnetic field is only measured along the trajectory of the spacecraft across the MC. Therefore, a magnetic model is needed to reconstruct the magnetic configuration of the encountered MC. The main aim of the present work is to extend the widely used cylindrical model to arbitrary cross-section shapes.Methods. The flux rope boundary is parametrized to account for a broad range of shapes. Then, the internal structure of the flux rope is computed by expressing the magnetic field as a series of modes of a linear force-free field.Results. We analyze the magnetic field profile along straight cuts through the flux rope, in order to simulate the spacecraft crossing through a MC. We find that the magnetic field orientation is only weakly affected by the shape of the MC boundary. Therefore, the MC axis can approximately be found by the typical methods previously used (e.g., minimum variance). The boundary shape affects the magnetic field strength most. The measurement of how much the field strength peaks along the crossing provides an estimation of the aspect ratio of the flux-rope cross-section. The asymmetry of the field strength between the front and the back of the MC, after correcting for the time evolution (i.e., its aging during the observation of the MC), provides an estimation of the cross-section global bending. A flat or/and bent cross-section requires a large anisotropy of the total pressure imposed at the MC boundary by the surrounding medium.Conclusions. The new theoretical model developed here relaxes the cylindrical symmetry hypothesis. It is designed to estimate the cross-section shape of the flux rope using the in-situ data of one spacecraft. This allows a more accurate determination of the global quantities, such as magnetic fluxes and helicity. These quantities are especially important for both linking an observed MC to its solar source and for understanding the corresponding evolution. © 2009 ESO.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Mandrini, C.H. - Pohjolainen, S. - Dasso, S. - Green, L.M. - Démoulin, P. - Van Driel-Gesztelyi, L. - Copperwheat, C. - Foley, C.
Astron. Astrophys. 2005;434(2):725-740
2005

Descripción: Using multi-instrument and multi-wavelength observations (SOHO/MDI and BIT, TRACE and Yohkoh/SXT), as well as computing the coronal magnetic field of a tiny bipole combined with modelling of Wind in situ data, we provide evidences for the smallest event ever observed which links a sigmoid eruption to an interplanetary magnetic cloud (MC). The tiny bipole, which was observed very close to the solar disc centre, had a factor one hundred less flux than a classical active region (AR). In the corona it had a sigmoidal structure, observed mainly in EUV, and we found a very high level of non-potentiality in the modelled magnetic field, 10 times higher than we have ever found in any AR. From May 11, 1998, and until its disappearance, the sigmoid underwent three intense impulsive events. The largest of these events had extended EUV dimmings and a cusp. The Wind spacecraft detected 4.5 days later one of the smallest MC ever identified (about a factor one hundred times less magnetic flux in the axial component than that of an average MC). The link between this last eruption and the interplanetary magnetic cloud is supported by several pieces of evidence: good timing, same coronal loop and MC orientation, same magnetic field direction and magnetic helicity sign in the coronal loops and in the MC. We further quantify this link by estimating the magnetic flux (measured in the dimming regions and in the MC) and the magnetic helicity (pre- to post-event change in the solar corona and helicity content of the MC). Within the uncertainties, both magnetic fluxes and helicities are in reasonable agreement, which brings further evidences of their link. These observations show that the ejections of tiny magnetic flux ropes are indeed possible and put new constraints on CME models. © ESO 2005.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Schmieder, B. - Mandrini, C. - Chandra, R. - Démoulin, P. - Török, T. - Pariat, E. - Uddin, W.
Proc. Int. Astron. Union 2010;6(S273):164-168
2010

Descripción: Active regions (ARs), involved in the Halloween events during October-November 2003, were the source of unusual activity during the following solar rotation. The flares on 18-20 November 2003 that occur in the AR NOAA10501 were accompanied by coronal mass ejections associated to some particularly geoeffective magnetic clouds. Our analysis of the magnetic flux and helicity injection revealed that a new emerging bipole and consequent shearing motions continuously energized the region during its disk passage. The stored energy was eventually released through the interaction of the various systems of magnetic loops by several magnetic reconnection events. Active events on November 18 (filament eruptions and CMEs) were originated by shearing motions along a section of the filament channel that injected magnetic helicity with sign opposite to that of the AR. Two homologous flares, that occurred on November 20, were apparently triggered by different mechanisms as inferred from the flare ribbons evolution (filament eruption and CMEs). We studied in detail the behaviour of two North-South oriented filaments on November 20 2003. They merged and split following a process suggestive of 'sling-shot' reconnection between two coronal flux ropes. We successfully tested this scenario in a 3D MHD simulation that is presented in this paper. © International Astronomical Union 2011.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Gulisano, A.M. - Démoulin, P. - Dasso, S. - Rodriguez, L.
Astron. Astrophys. 2012;543
2012

Descripción: Context. A large amount of magnetized plasma is frequently ejected from the Sun as coronal mass ejections (CMEs). Some of these ejections are detected in the solar wind as magnetic clouds (MCs) that have flux rope signatures. Aims. Magnetic clouds are structures that typically expand in the inner heliosphere. We derive the expansion properties of MCs in the outer heliosphere from one to five astronomical units to compare them with those in the inner heliosphere. Methods. We analyze MCs observed by the Ulysses spacecraft using in situ magnetic field and plasma measurements. The MC boundaries are defined in the MC frame after defining the MC axis with a minimum variance method applied only to the flux rope structure. As in the inner heliosphere, a large fraction of the velocity profile within MCs is close to a linear function of time. This is indicative of a self-similar expansion and a MC size that locally follows a power-law of the solar distance with an exponent called ζ. We derive the value of ζ from the in situ velocity data. Results. We analyze separately the non-perturbed MCs (cases showing a linear velocity profile almost for the full event), and perturbed MCs (cases showing a strongly distorted velocity profile). We find that non-perturbed MCs expand with a similar non-dimensional expansion rate (ζ = 1.05 ± 0.34), i.e. slightly faster than at the solar distance and in the inner heliosphere (ζ = 0.91 ± 0.23). The subset of perturbed MCs expands, as in the inner heliosphere, at a significantly lower rate and with a larger dispersion (ζ = 0.28 ± 0.52) as expected from the temporal evolution found in numerical simulations. This local measure of the expansion also agrees with the distribution with distance of MC size, mean magnetic field, and plasma parameters. The MCs interacting with a strong field region, e.g. another MC, have the most variable expansion rate (ranging from compression to over-expansion). © 2012 ESO.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Gulisano, A.M. - Démoulin, P. - Dasso, S. - Ruiz, M.E. - Marsch, E.
Astron. Astrophys. 2010;509(1)
2010

Descripción: Context: Observations of magnetic clouds (MCs) are consistent with the presence of flux ropes detected in the solar wind (SW) a few days after their expulsion from the Sun as coronal mass ejections (CMEs). Aims: Both the in situ observations of plasma velocity profiles and the increase of their size with solar distance show that MCs are typically expanding structures. The aim of this work is to derive the expansion properties of MCs in the inner heliosphere from 0.3 to 1 AU. Methods: We analyze MCs observed by the two Helios spacecraft using in situ magnetic field and velocity measurements. We split the sample in two subsets: those MCs with a velocity profile that is significantly perturbed from the expected linear profile and those that are not. From the slope of the in situ measured bulk velocity along the Sun-Earth direction, we compute an expansion speed with respect to the cloud center for each of the analyzed MCs. Results: We analyze how the expansion speed depends on the MC size, the translation velocity, and the heliocentric distance, finding that allMCs in the subset of non-perturbed MCs expand with almost the same non-dimensional expansion rate (ζ).We find departures from this general rule for ζ only for perturbed MCs, and we interpret the departures as the consequence of a local and strong SW perturbation by SW fast streams, affecting the MC even inside its interior, in addition to the direct interaction region between the SW and the MC. We also compute the dependence of the mean total SW pressure on the solar distance and we confirm that the decrease of the total SW pressure with distance is the main origin of the observed MC expansion rate. We found that ζ was 0.91 ± 0.23 for non-perturbed MCs while ζ was 0.48 ± 0.79 for perturbed MCs, the larger spread in the last ones being due to the influence of the solar wind local environment conditions on the expansion. © ESO 2010.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo