por que contenga las palabras

Busqueda avanzada

5 documentos corresponden a la consulta.
Palabras contadas: ultraviolet: 35, radiation: 54
Abrevaya, X.C. - Cortón, E. - Mauas, P.J.D.
Proc. Int. Astron. Union 2011;7(S286):405-409
2011

Descripción: At present, dwarf M stars are being considered as potential hosts for habitable planets. However, an important fraction of these stars are flare stars, which among other kind of radiation, emit large amounts of UV radiation during flares, and it is unknown how this events can affect life, since biological systems are particularly vulnerable to UV. In this work we evaluate a well known dMe star, EV Lacertae (GJ 873) as a potential host for the emergence and evolution of life, focusing on the effects of the UV emission associated with flare activity. Since UV-C is particularly harmful for living organisms, we studied the effect of UV-C radiation on halophile archaea cultures. The halophile archaea or haloarchaea are extremophile microorganisms, which inhabit in hypersaline environments and which show several mechanisms to cope with UV radiation since they are naturally exposed to intense solar UV radiation on Earth. To select the irradiance to be tested, we considered a moderate flare on this star. We obtained the mean value for the UV-C irradiance integrating the IUE spectrum in the impulsive phase, and considering a hypothetical planet in the center of the liquid water habitability zone. To select the irradiation times we took the most frequent duration of flares on this star which is from 9 to 27 minutes. Our results show that even after considerable UV damage, the haloarchaeal cells survive at the tested doses, showing that this kind of life could survive in a relatively hostile UV environment. © 2012 International Astronomical Union.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Marazita, M.C. - Florencia Ogara, M. - Sonzogni, S.V. - Martí, M. - Dusetti, N.J. - Pignataro, O.P. - Cánepa, E.T.
PLoS ONE 2012;7(4)
2012

Descripción: DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, b-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with 32P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage. © 2012 Marazita et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Tanos, T. - Marinissen, M.J. - Leskow, F.C. - Hochbaum, D. - Martinetto, H. - Gutkind, J.S. - Coso, O.A.
J. Biol. Chem. 2005;280(19):18842-18852
2005

Descripción: Exposure to sources of UV radiation, such as sunlight, induces a number of cellular alterations that are highly dependent on its ability to affect gene expression. Among them, the rapid activation of genes coding for two subfamilies of proto-oncoproteins, Fos and Jun, which constitute the AP-1 transcription factor, plays a key role in the subsequent regulation of expression of genes involved in DNA repair, cell proliferation, cell cycle arrest, death by apoptosis, and tissue and extracellular matrix remodeling proteases. Besides being regulated at the transcriptional level, Jun and Fos transcriptional activities are also regulated by phosphorylation as a result of the activation of intracellular signaling cascades. In this regard, the phosphorylation of c-Jun by UV-induced JNK has been readily documented, whereas a role for Fos proteins in UV-mediated responses and the identification of Fos-activating kinases has remained elusive. Here we identify p38 MAPKs as proteins that can associate with c-Fos and phosphorylate its transactivation domain both in vitro and in vivo. This phosphorylation is transduced into changes in its transcriptional ability as p38-activated c-Fos enhances AP1-driven gene expression. Our findings indicate that as a consequence of the activation of stress pathways induced by UV light, endogenous c-Fos becomes a substrate of p38 MAPKs and, for the first time, provide evidence that support a critical role for p38 MAPKs in mediating stress-induced c-Fos phosphorylation and gene transcription activation. Using a specific pharmacological inhibitor for p38α and -β, we found that most likely these two isoforms mediate UV-induced c-Fos phosphorylation in vivo. Thus, these newly described pathways act concomitantly with the activation of c-Jun by JNK/MAPKs, thereby contributing to the complexity of AP1-driven gene transcription regulation.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ceruti, J.M. - Scassa, M.E. - Flo, J.M. - Varone, C.L. - Cánepa, E.T.
Oncogene 2005;24(25):4065-4080
2005

Temas:   Apoptosis -  CDK4/6 -  DNA repair -  INK4 -  Neuroblastoma -  UV -  caspase 3 -  DNA -  DNA fragment -  RNA

Descripción: The genetic instability driving tumorigenesis is fuelled by DNA damage and by errors made by the DNA replication. Upon DNA damage the cell organizes an integrated response not only by the classical DNA repair mechanisms but also involving mechanisms of replication, transcription, chromatin structure dynamics, cell cycle progression, and apoptosis. In the present study, we investigated the role of p19INK4d in the response driven by neuroblastoma cells against DNA injury caused by UV irradiation. We show that p19INK4d is the only INK4 protein whose expression is induced by UV light in neuroblastoma cells. Furthermore, p19INK4d translocation from cytoplasm to nucleus is observed after UV irradiation. Ectopic expression of p19INK4d clearly reduces the UV-induced apoptosis as well as enhances the cellular ability to repair the damaged DNA. It is clearly shown that DNA repair is the main target of p19INK4d effect and that diminished apoptosis is a downstream event. Importantly, experiments performed with CDK4 mutants suggest that these p19INK4d effects would be independent of its role as a cell cycle checkpoint gene. The results presented herein uncover a new role of p19INK4d as regulator of DNA-damage-induced apoptosis and suggest that it protects cells from undergoing apoptosis by allowing a more efficient DNA repair. We propose that, in addition to its role as cell cycle inhibitor, p19INK4d is involved in maintenance of DNA integrity and, therefore, would contribute to cancer prevention. © 2005 Nature Publishing Group. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Lanzarotti, E. - Pellizza, L. - Bercovich, A. - Foti, M. - Coria, S.H. - Vazquez, S.C. - Ruberto, L. - Hernández, E.A. - Dias, R.L. - Mac Cormack, W.P. - Cicero, D.O. - Smal, C. - Nicolas, M.F. - Vasconcelos, A.T.R. - Marti, M.A. - Turjanski, A.G.
J. Bacteriol. 2011;193(23):6797-6798
2011

Descripción: A psychrotolerant marine bacterial strain, designated JUB59 T, was isolated from Antarctic surface seawater and classified as a new species of the genus Bizionia. Here, we present the first draft genome sequence for this genus, which suggests interesting features such as UV resistance, hydrolytic exoenzymes, and nitrogen metabolism. © 2011, American Society for Microbiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo