por que contenga las palabras

Busqueda avanzada

12 documentos corresponden a la consulta.
Palabras contadas: electric: 91, potential: 199
Marshall, G. - Mocskos, P. - Swinney, H.L. - Huth, J.M.
Phys Rev E. 1999;59(2):2157-2167
1999

Tipo de documento: info:ar-repo/semantics/artículo

Zanella, J. - Calzetta, E.
Phys Rev E. 2002;66(3)
2002

Descripción: We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Prevosto, L. - Kelly, H. - Mancinelli, B.
J Appl Phys 2009;105(12)
2009

Descripción: A numerical study of the space-charge sheath adjacent to the nozzle wall of a cutting torch is presented. The hydrodynamic model corresponds to a collision-dominated sheath and does not assume cold ions, so drift-diffusion-type equations are used. Also an improved expression for the ion-neutral momentum transfer is employed rather than the usual constant ion-mean-free-path or constant ion collision frequency approximations. Assuming a constant electron temperature in the sheath and neglecting the electron inertial term, the continuity and momentum equations for ions and electrons, together with Poisson's equation, were solved for the electric potential, ion velocities (both normal and tangential components), and for the ion and electron densities. It was found that both the ion and electron densities present a sudden drop at the sheath-plasma edge. The ion density continues to decrease slowly inside the sheath, while the electron density presents a virtually zero value everywhere inside the sheath, the electron thermal conduction flux to the nozzle wall being negligible. These wall results thus become thermally isolated in spite of the high electron temperature in its adjacency. For a nozzle biasing voltage close to the gas breakdown, it was found that the electric field value is high, reaching a value of about 9× 106 V m-1 at the exit of the nozzle wall. This value is higher than the average field value across the sheath and is on the order of the breakdown threshold value. This means that an undesired sheath breakdown could occur at the vicinities of the nozzle exit even if the average electric field across the sheath is not strong enough. © 2009 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Rela, L. - Szczupak, L.
J. Neurosci. 2003;23(2):682-692
2003

Descripción: Electrical transmission among neurons has been considered a mechanism to synchronize neuronal activity, and rectification provides a mechanism to confine the flow of signals among the connected neurons. The question is how this type of transmission operates within complex neuronal networks. In the leech, the neurons located in position 151 of the midbody ganglion map are connected to virtually every motoneuron via rectifying electrical synapses that pass negative current to the motoneurons. These are nonspiking neurons, and here we have labeled them NS neurons. The goal of this investigation has been to assess their role in regulating motor activity and how rectifying electrical synapses contribute to the function of motor networks. The coupling between NS neurons and motoneurons was voltage sensitive: it increased as motoneurons were depolarized. In addition, excitation of motoneurons evoked hyperpolarizing synaptic responses in NS neurons, the amplitude of which depended on the membrane potential of the latter and on the motoneuron firing frequency. This hyperpolarization was mediated by chemical transmission through an interneuronal layer that spanned the nerve cord. These interactions established a feedback loop between NS and motoneurons that was regulated by the membrane potential of NS. This mechanism was responsible for the uncoupling between otherwise electrically coupled motoneurons. In this way, the NS neurons can act as "electrical neuromodulators," modifying the interaction of other neurons, depending on the activity of the system as a whole.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Kelly, H. - Lepone, A. - Minotti, F.
J Appl Phys 2000;87(12):8316-8322
2000

Descripción: A numerical solution for the metallic-plasma-neutral-gas structure generated in a low-pressure arc is presented. The equations correspond to a spherically symmetric fluid-like steady model, valid for the outer region of the arc, and describe the ion slowing down by elastic scattering with the neutral particles. Technically, the obtention of the profiles of different magnitudes is complicated due to the existence of a critical point in the steady-state system of equations. The proposed approach to overcome this difficulty is to solve instead a pseudotransient system of equations which rapidly and efficiently relax to the stationary state. By employing this numerical method of second-order accuracy in space, the plasma and neutral gas density, the electron and ion drift velocities, the electron and neutral temperatures, and the electrostatic potential profiles are obtained from the border of the arc channel up to the discharge chamber wall. It is found that the value of the neutral gas filling pressure strongly influences the plasma density and plasma potential distributions. An important result is that metallic ions emitted from the arc channel deliver their kinetic energy to the filling gas in a gradual manner, up to a pressure-dependent point beyond which they move to the walls sustained against collisions with the gas by a self-consistent electric field. Near the mentioned point, the metallic ion density presents a peculiar behavior, showing an increase that is more pronounced at high pressures; a pattern also evident in the electrostatic potential. © 2000 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Bermudez, M.M. - Sosa, R. - Grondona, D. - Márquez, A. - Kelly, H. - Artana, G.
J. Phys. Conf. Ser. 2011;296(1)
2011

Descripción: The use of plasma actuators is a recent technology that imposes a localized electric force that is used to control air flows. A suitable representation of actuation enables to undertake plasma actuators optimization, to design flow-control strategies, or to analyse the flow stabilization that can be attained by plasma forcing. The problem description may be clearly separated in two regions. An outer region, where the fluid is electrically neutral, in which the flow is described by the Navier-Stokes equation without any forcing term. An inner region, that forms a thin boundary layer, where the fluid is ionized and electric forces are predominant. The outer limit of the inner solution becomes the boundary condition for the outer problem. The outer problem can then be solved with a slip velocity that is issued from the inner solution. Although the solution for the inner problem is quite complex it can be contoured proposing pseudo-empirical models where the slip velocity of the outer problem is determined indirectly from experiments. This pseudo-empirical model approach has been recently tested in different cylinder flows and revealed quite adapted to describe actuated flow behaviour. In this work we determine experimentally the influence of the duty cycle on the slip velocity distribution. The velocity was measured by means of a pitot tube and flow visualizations of the starting vortex (i.e. the induced flow when actuation is activated in a quiescent air) have been done by means of the Schlieren technique. We also performed numerical experiments to simulate the outer region problem when actuation is activated in a quiescent air using a slip velocity distribution as a boundary condition. The experimental and numerical results are in good agreement showing the potential of this pseudo-empirical model approach to characterize the plasma actuation.
...ver más

Tipo de documento: info:ar-repo/semantics/documento de conferencia

De San Martín, J.Z. - Pyott, S. - Ballestero, J. - Katz, E.
J. Neurosci. 2010;30(36):12157-12167
2010

Descripción: In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast, and inhibitory. This efferent synapse is mediated by the nicotinic α9α10 receptor coupled to the activation of SK2 Ca 2+-activated K+ channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown. To identify these channels, we used an isolated mouse cochlear preparation and monitored transmitter release from the efferent synaptic terminals in inner hair cells (IHCs) voltage clamped in the whole-cell recording configuration. Acetylcholine (ACh) release was evoked by electrically stimulating the efferent fibers that make axosomatic contacts with IHCs before the onset of hearing. Using the specific antagonists for P/Q- and N-type voltage-gated calcium channels (VGCCs), ω-agatoxin IVA and ω-conotoxin GVIA, respectively, we show that Ca2+ entering through both types of VGCCs support the release process at this synapse. Interestingly, we found that Ca2+ entering through the dihydropiridine-sensitive L-type VGCCs exerts a negative control on transmitter release. Moreover, using immunostaining techniques combined with electrophysiology and pharmacology, we show that BK Ca2+-activated K+ channels are transiently expressed at the OC efferent terminals contacting IHCs and that their activity modulates the release process at this synapse. The effects of dihydropiridines combined with iberiotoxin, a specific BK channel antagonist, strongly suggest that L-type VGCCs negatively regulate the release of ACh by fueling BK channels that are known to curtail the duration of the terminal action potential in several types of neurons. Copyright © 2010 the authors.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Disalvo, E.A. - Lairion, F. - Martini, F. - Tymczyszyn, E. - Frías, M. - Almaleck, H. - Gordillo, G.J.
Biochim. Biophys. Acta Biomembr. 2008;1778(12):2655-2670
2008

Descripción: The scope of the present review focuses on the interfacial properties of cell membranes that may establish a link between the membrane and the cytosolic components. We present evidences that the current view of the membrane as a barrier of permeability that contains an aqueous solution of macromolecules may be replaced by one in which the membrane plays a structural and functional role. Although this idea has been previously suggested, the present is the first systematic work that puts into relevance the relation water-membrane in terms of thermodynamic and structural properties of the interphases that cannot be ignored in the understanding of cell function. To pursue this aim, we introduce a new definition of interphase, in which the water is organized in different levels on the surface with different binding energies. Altogether determines the surface free energy necessary for the structural response to changes in the surrounding media. The physical chemical properties of this region are interpreted in terms of hydration water and confined water, which explain the interaction with proteins and could affect the modulation of enzyme activity. Information provided by several methodologies indicates that the organization of the hydration states is not restricted to the membrane plane albeit to a region extending into the cytoplasm, in which polar head groups play a relevant role. In addition, dynamic properties studied by cyclic voltammetry allow one to deduce the energetics of the conformational changes of the lipid head group in relation to the head-head interactions due to the presence of carbonyls and phosphates at the interphase. These groups are, apparently, surrounded by more than one layer of water molecules: a tightly bound shell, that mostly contributes to the dipole potential, and a second one that may be displaced by proteins and osmotic stress. Hydration water around carbonyl and phosphate groups may change by the presence of polyhydroxylated compounds or by changing the chemical groups esterified to the phosphates, mainly choline, ethanolamine or glycerol. Thus, surface membrane properties, such as the dipole potential and the surface pressure, are modulated by the water at the interphase region by changing the structure of the membrane components. An understanding of the properties of the structural water located at the hydration sites and the functional water confined around the polar head groups modulated by the hydrocarbon chains is helpful to interpret and analyze the consequences of water loss at the membranes of dehydrated cells. In this regard, a correlation between the effects of water activity on cell growth and the lipid composition is discussed in terms of the recovery of the cell volume and their viability. Critical analyses of the properties of water at the interface of lipid membranes merging from these results and others from the literature suggest that the interface links the membrane with the aqueous soluble proteins in a functional unit in which the cell may be considered as a complex structure stabilized by water rather than a water solution of macromolecules surrounded by a semi permeable barrier. © 2008 Elsevier B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Arcisauskaite, V. - Melo, J.I. - Hemmingsen, L. - Sauer, S.P.A.
J Chem Phys 2011;135(4)
2011

Descripción: We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL2 (L = Cl, Br, I, CH 3) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH3)2 within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr 2 and HgI2 when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Auzmendi, J. - Fernández Do Porto, D. - Pallavicini, C. - Moffatt, L.
PLoS ONE 2012;7(8)
2012

Descripción: Background: Resolving the kinetics of agonist binding events separately from the subsequent channel gating processes requires the ability of applying and removing the agonist before channel gating occurs. No reported system has yet achieved pulses shorter than 100 μs, necessary to study nicotinic ACh receptor or AMPA receptor activation. Methodology/Principal Findings: Solution exchange systems deliver short agonist pulses by moving a sharp interface between a control and an experimental solution across a channel preparation. We achieved shorter pulses by means of an exchange system that combines a faster flow velocity, narrower partition between the two streams, and increased velocity and bandwidth of the movement of the interface. The measured response of the entire system was fed back to optimize the voltage signal applied to the piezoelectric actuator overcoming the spurious oscillations arising from the mechanical resonances when a high bandwidth driving function was applied. Optimization was accomplished by analyzing the transfer function of the solution exchange system. When driven by optimized command pulses the enhanced system provided pulses lasting 26 ± 1 μs and exchanging 93 ± 1% of the solution, as measured in the open tip of a patch pipette. Conclusions/Significance: Pulses of this duration open the experimental study of the molecular events that occur between the agonist binding and the opening of the channel. © 2012 Auzmendi et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ballestero, J. - de San Martín, J.Z. - Goutman, J. - Elgoyhen, A.B. - Fuchs, P.A. - Katz, E.
J. Neurosci. 2011;31(41):14763-14774
2011

Descripción: In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHC function. How this process is orchestrated at the synaptic level remains unknown. In the present study, MOC firing was evoked by electrical stimulation in an isolated mouse cochlear preparation, while OHCs postsynaptic responses were monitored by whole-cell recordings. These recordings confirmed that electrically evoked IPSCs (eIPSCs) are mediated solely by α9β10 nAChRs functionally coupled to calcium-activated SK2 channels. Synaptic release occurred with low probability when MOC-OHC synapses were stimulated at 1 Hz. However, as the stimulation frequency was raised, the reliability of release increased due to presynaptic facilitation. In addition, the relatively slow decay of eIPSCs gave rise to temporal summation at stimulation frequencies >10 Hz. The combined effect of facilitation and summation resulted in a frequency-dependent increase in the average amplitude of inhibitory currents in OHCs. Thus, we have demonstrated that short-term plasticity is responsible for shaping MOC inhibition and, therefore, encodes the transfer function from efferent firing frequency to the gain of the cochlear amplifier. © 2011 the authors.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Pagani, M.R. - Reisin, R.C. - Uchitel, O.D.
J. Neurosci. 2006;26(10):2661-2672
2006

Descripción: Sporadic amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects particularly motoneurons. Several pieces of evidence suggested the involvement of autoimmune mechanisms mediated by antibodies in ALS. However, the significance of those antibodies in the disease and the underlying mechanisms are unknown. Here we showed that IgG purified from a group of sporadic ALS patients, but not familial ALS patients, specifically interact with the presynaptic membrane of motoneurons through an antigen-antibody interaction and modulated synaptic transmission. Immunoreactivity against nerve terminals showed strong correlation with synaptic modulation ability. In addition, several controls have ruled out the possibility for this synaptic modulation to be mediated through proteases or nonspecific effects. Effective IgG potentiated both spontaneous and asynchronous transmitter release. Application of pharmacological inhibitors suggested that activation of this increased release required a nonconstitutive Ca2+ influx through N-type (Ca v2.2) channels and phospholipase C activity and that activation of IP3 and ryanodine receptors were necessary to both activate and sustain the increased release. Consistent with the notion that ALS is heterogeneous disorder, our results reveal that, in ∼50% of ALS patients, motor nerve terminals constitutes a target for autoimmune response. Copyright © 2006 Society for Neuroscience.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo