por que contenga las palabras

Busqueda avanzada

4 documentos corresponden a la consulta.
Palabras contadas: interleukin: 31, 12: 51
Mascanfroni, I.D. - Montesinos, M.D.M. - Alamino, V.A. - Susperreguy, S. - Nicola, J.P. - Ilarregui, J.M. - Masini-Repiso, A.M. - Rabinovich, G.A. - Pellizas, C.G.
J. Biol. Chem. 2010;285(13):9569-9582
2010

Descripción: Despite considerable progress in our understanding of the interplay between immune and endocrine systems, the role of thyroid hormones and their receptors in the control of adaptive immunity is still uncertain. Here, we investigated the role of thyroid hormone receptor (TR) β 1 signaling in modulating dendritic cell (DC) physiology and the intracellular mechanisms underlying these immunoregulatory effects. Exposure of DCs to triiodothyronine (T 3 ) resulted in a rapid and sustained increase in Akt phosphorylation independently of phosphatidylinositol 3-kinase activation, which was essential for supporting T 3 -induced DC maturation and interleukin (IL)-12 production. This effect was dependent on intact TRβ 1 signaling as small interfering RNA-mediated silencing of TRβ 1 expression prevented T 3 -induced DC maturation and IL-12 secretion as well as Akt activation and IκB-ε degradation. In turn, T 3 up-regulated TRβ 1 expression through mechanisms involving NF-κB, suggesting an autocrine regulatory loop to control hormone-dependent TRβ 1 signaling. These findings were confirmed by chromatin immunoprecipitation analysis, which disclosed a new functional NF-κB consensus site in the promoter region of the TRB1 gene. Thus, a T 3 -induced NF-κB-dependent mechanism controls TRβ 1 expression, which in turn signals DCs to promote maturation and function via an Akt-dependent but PI3K-independent pathway. These results underscore a novel unrecognized target that regulates DC maturation and function with critical implications in immunopathology at the crossroads of the immune-endocrine circuits. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

von Euw, E.M. - Barrio, M.M. - Furman, D. - Bianchini, M. - Levy, E.M. - Yee, C. - Li, Y. - Wainstok, R. - Mordoh, J.
J. Transl. Med. 2007;5
2007

Descripción: Background: In the present study, we demonstrate, in rigorous fashion, that human monocyte-derived immature dendritic cells (DCs) can efficiently cross-present tumor-associated antigens when co-cultured with a mixture of human melanoma cells rendered apoptotic/necrotic by γ irradiation (Apo-Nec cells). Methods: We evaluated the phagocytosis of Apo-Nec cells by FACS after PKH26 and PKH67 staining of DCs and Apo-Nec cells at different times of coculture. The kinetics of the process was also followed by electron microscopy. DCs maturation was also studied monitoring the expression of specific markers, migration towards specific chemokines and the ability to cross-present in vitro the native melanoma-associated Ags MelanA/MART-1 and gp100. Results: Apo-Nec cells were efficiently phagocytosed by immature DCs (iDC) (55 ± 10.5%) at 12 hs of coculture. By 12-24 hs we observed digested Apo-Nec cells inside DCs and large empty vacuoles as part of the cellular processing. Loading with Apo-Nec cells induced DCs maturation to levels achieved using LPS treatment, as measured by: i) the decrease in FITC - Dextran uptake (iDC: 81 ± 5%; DC/Apo-Nec 33 ± 12%); ii) the cell surface up-regulation of CD80, CD86, CD83, CCR7, CD40, HLA-I and HLA-II and iii) an increased in vitro migration towards MIP-3β. DC/Apo-Nec isolated from HLA-A*0201 donors were able to induce >600 pg/ml IFN-γ secretion of CTL clones specific for MelanA/MART-1 and gp100 Ags after 6 hs and up to 48 hs of coculture, demonstrating efficient cross-presentation of the native Ags. Intracellular IL-12 was detected in DC/Apo-Nec 24 hs post-coculture while IL-10 did not change. Conclusion: We conclude thatthe use of a mixture of four apoptotic/ necrotic melanoma cell lines is a suitable source of native melanoma Ags that provides maturation signals for DCs, increases migration to MIP-3β and allows Ag cross-presentation. This strategy could be exploited for vaccination of melanoma patients. © 2007 von Euw et al; licensee BioMed Central Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Roca, V. - Larocca, L. - Calafat, M. - Aisemberg, J. - Meiss, R. - Franchi, A.M. - Leirós, C.P.
Reproduction 2006;132(6):931-938
2006

Descripción: A functional interaction between progesterone, Th2 cytokines and a suitable balance between nitric oxide and prostaglandins in the uterus is considered to have a major role in the success of embryo implantation and pregnancy. Non-obese diabetic (NOD) mice offer a suitable model to study the modulatory role of Th1 cytokines on uterus signalling and function, since at the prediabetic stage they develop a spontaneous Th1 autoimmune response against exocrine glands similar to Sjögren's syndrome. Vasoactive intestinal peptide (VIP) is a vasoactive neuro- and immunopeptide that promotes Th2 profiles and contributes to the smooth muscle relaxation and vasodilation. The aim of the present study was to investigate the activities of nitric oxide synthase and cyclo-oxygenase and the effect of VIP in the uterus of NOD mice with an emerging Th1 cytokine response. We present evidence of a reduced basal and VIP-stimulated activity of both enzymes in the uterus of NOD mice compared with normal BALB/c mice in proestrus. An altered functional interaction between both enzymes is also present in NOD mice at the time when increased levels of serum interleukin (IL)-12 and tumour necrosis factor-α but not interferon (IFN)-γ or IL-10 were detected. We conclude that signalling alterations in uteri of NOD mice are simultaneous to the onset of a systemic Th1 cytokine response. © 2006 Society for Reproduction and Fertility.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Salamone, G.V. - Petracca, Y. - Bass, J.I.F. - Rumbo, M. - Nahmod, K.A. - Gabelloni, M.L. - Vermeulen, M.E. - Matteo, M.J. - Geffner, J.R. - Trevani, A.S.
Lab. Invest. 2010;90(7):1049-1059
2010

Descripción: Neutrophils are short-lived cells that rapidly undergo apoptosis. However, their survival can be regulated by signals from the environment. Flagellin, the primary component of the bacterial flagella, is known to induce neutrophil activation. In this study we examined the ability of flagellin to modulate neutrophil apoptosis. Neutrophils cultured for 12 and 24 h in the presence of flagellin from Salmonella thyphimurim at concentrations found in pathological situations underwent a marked prevention of apoptosis. In contrast, Helicobacter pylori flagellin did not affect neutrophil survival, suggesting that Salmonella flagellin exerts the antiapoptotic effect by interacting with TLR5. The delaying in apoptosis mediated by Salmonella flagellin was coupled to higher expression levels of the antiapoptotic protein Mcl-1 and lower levels of activated caspase-3. Analysis of the signaling pathways indicated that Salmonella flagellin induced the activation of the p38 and ERK1/2 MAPK pathways as well as the PI3K/Akt pathway. Furthermore, it also stimulated IBα degradation and the phosphorylation of the p65 subunit, suggesting that Salmonella flagellin also triggers NF-B activation. Moreover, the pharmacological inhibition of ERK1/2 pathway and NF-B activation partially prevented the antiapoptotic effects exerted by flagellin. Finally, the apoptotic delaying effect exerted by flagellin was also evidenced when neutrophils were cultured with whole heat-killed S. thyphimurim. Both a wild-type and an aflagellate mutant S. thyphimurim strain promoted neutrophil survival; however, when cultured in low bacteria/neutrophil ratios, the flagellate bacteria showed a higher capacity to inhibit neutrophil apoptosis, although both strains showed a similar ability to induce neutrophil activation. Taken together, our results indicate that flagellin delays neutrophil apoptosis by a mechanism partially dependent on the activation of ERK1/2 MAPK and NF-B. The ability of flagellin to delay neutrophil apoptosis could contribute to perpetuate the inflammation during infections with flagellated bacteria. © 2010 USCAP, Inc All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo