por que contenga las palabras

Busqueda avanzada

18 documentos corresponden a la consulta.
Palabras contadas: channels: 93, calcium: 230
González Inchauspe, C. - Martini, F.J. - Forsythe, I.D. - Uchitel, O.D.
J. Neurosci. 2004;24(46):10379-10383
2004

Descripción: Calcium channels of the P/Q subtype mediate transmitter release at the neuromuscular junction and at many central synapses, such as the calyx of Held. Transgenic mice in which α1A channels are ablated provide a powerful tool with which to test compensatory mechanisms at the synapse and to explore mechanisms of presynaptic regulation associated with expression of P/Q channels. Using the calyx of Held preparation from the knock-out (KO) mice, we show here that N-type channels functionally compensate for the absence of P/Q subunits at the calyx and evoke giant synaptic currents [approximately two-thirds of the magnitude of wild-type (WT) responses]. However, although evoked paired-pulse facilitation is prominent in WT, this facilitation is greatly diminished in the KO. In addition, direct recording of presynaptic calcium currents revealed that the major functional difference was the absence of calcium-dependent facilitation at the calyx in the P/Q KO animals. We conclude that one physiological function of P/Q channels is to provide additional facilitatory drive, so contributing to maintenance of transmission as vesicles are depleted during high throughput synaptic transmission.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Urbano, F.J. - Piedras-Rentería, E.S. - Jun, K. - Shin, H.-S. - Uchitel, O.D. - Tsien, R.W.
Proc. Natl. Acad. Sci. U. S. A. 2003;100(6):3491-3496
2003

Descripción: Transmission at the mouse neuromuscular junction normally relies on P/Q-type channels, but became jointly dependent on both N-and R-type Ca2+ channels when the P/Q-type channel α1A subunit was deleted. R-type channels lay close to Ca2+ sensors for exocytosis and IK(Ca) channel activation, like the P/Q-type channels they replaced. In contrast, N-type channels were less well localized, but abundant enough to influence secretion strongly, particularly when action potentials were prolonged. Our data suggested that active zone structures may select among multiple Ca2+ channels in the hierarchy P/Q>R>N. The α1A-/- neuromuscular junction displayed several other differences from wild-type: lowered quantal content but greater ability to withstand reductions in the Ca2+/Mg2+ ratio, and little or no paired-pulse facilitation, the latter findings possibly reflecting compensatory mechanisms at individual release sites. Changes in presynaptic function were also associated with a significant reduction in the size of postsynaptic acetylcholine receptor clusters.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Solovey, G. - Fraiman, D. - Dawson, S.P.
Front. Physiol. 2011;2 AUG
2011

Descripción: Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs). To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic non-linear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes. © 2011 Solovey, Fraiman and Dawson.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

De San Martín, J.Z. - Pyott, S. - Ballestero, J. - Katz, E.
J. Neurosci. 2010;30(36):12157-12167
2010

Descripción: In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast, and inhibitory. This efferent synapse is mediated by the nicotinic α9α10 receptor coupled to the activation of SK2 Ca 2+-activated K+ channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown. To identify these channels, we used an isolated mouse cochlear preparation and monitored transmitter release from the efferent synaptic terminals in inner hair cells (IHCs) voltage clamped in the whole-cell recording configuration. Acetylcholine (ACh) release was evoked by electrically stimulating the efferent fibers that make axosomatic contacts with IHCs before the onset of hearing. Using the specific antagonists for P/Q- and N-type voltage-gated calcium channels (VGCCs), ω-agatoxin IVA and ω-conotoxin GVIA, respectively, we show that Ca2+ entering through both types of VGCCs support the release process at this synapse. Interestingly, we found that Ca2+ entering through the dihydropiridine-sensitive L-type VGCCs exerts a negative control on transmitter release. Moreover, using immunostaining techniques combined with electrophysiology and pharmacology, we show that BK Ca2+-activated K+ channels are transiently expressed at the OC efferent terminals contacting IHCs and that their activity modulates the release process at this synapse. The effects of dihydropiridines combined with iberiotoxin, a specific BK channel antagonist, strongly suggest that L-type VGCCs negatively regulate the release of ACh by fueling BK channels that are known to curtail the duration of the terminal action potential in several types of neurons. Copyright © 2010 the authors.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Pagani, M.R. - Reisin, R.C. - Uchitel, O.D.
J. Neurosci. 2006;26(10):2661-2672
2006

Descripción: Sporadic amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects particularly motoneurons. Several pieces of evidence suggested the involvement of autoimmune mechanisms mediated by antibodies in ALS. However, the significance of those antibodies in the disease and the underlying mechanisms are unknown. Here we showed that IgG purified from a group of sporadic ALS patients, but not familial ALS patients, specifically interact with the presynaptic membrane of motoneurons through an antigen-antibody interaction and modulated synaptic transmission. Immunoreactivity against nerve terminals showed strong correlation with synaptic modulation ability. In addition, several controls have ruled out the possibility for this synaptic modulation to be mediated through proteases or nonspecific effects. Effective IgG potentiated both spontaneous and asynchronous transmitter release. Application of pharmacological inhibitors suggested that activation of this increased release required a nonconstitutive Ca2+ influx through N-type (Ca v2.2) channels and phospholipase C activity and that activation of IP3 and ryanodine receptors were necessary to both activate and sustain the increased release. Consistent with the notion that ALS is heterogeneous disorder, our results reveal that, in ∼50% of ALS patients, motor nerve terminals constitutes a target for autoimmune response. Copyright © 2006 Society for Neuroscience.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Álvarez, Y.D. - Belingheri, A.V. - Perez Bay, A.E. - Javis, S.E. - Tedford, H.W. - Zamponi, G. - Marengo, F.D.
PLoS ONE 2013;8(1)
2013

Descripción: It is generally accepted that the immediately releasable pool is a group of readily releasable vesicles that are closely associated with voltage dependent Ca2+ channels. We have previously shown that exocytosis of this pool is specifically coupled to P/Q Ca2+ current. Accordingly, in the present work we found that the Ca2+ current flowing through P/Q-type Ca2+ channels is 8 times more effective at inducing exocytosis in response to short stimuli than the current carried by L-type channels. To investigate the mechanism that underlies the coupling between the immediately releasable pool and P/Q-type channels we transiently expressed in mouse chromaffin cells peptides corresponding to the synaptic protein interaction site of Cav2.2 to competitively uncouple P/Q-type channels from the secretory vesicle release complex. This treatment reduced the efficiency of Ca2+ current to induce exocytosis to similar values as direct inhibition of P/Q-type channels via ω-agatoxin-IVA. In addition, the same treatment markedly reduced immediately releasable pool exocytosis, but did not affect the exocytosis provoked by sustained electric or high K+ stimulation. Together, our results indicate that the synaptic protein interaction site is a crucial factor for the establishment of the functional coupling between immediately releasable pool vesicles and P/Q-type Ca2+ channels. © 2013 Álvarez et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ventura, A.C. - Bruno, L. - Demuro, A. - Parker, I. - Dawson, S.P.
Biophys. J. 2005;88(4):2403-2421
2005

Descripción: Local intracellular Ca2+ signals result from Ca2+ flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca2+ flux. However, this is difficult to infer from fluorescence Ca2+ images because the distribution of Ca2+-bound dye is affected by poorly characterized processes including diffusion of Ca2+ ions, their binding to mobile and immobile buffers, and sequestration by Ca2+ pumps. Several methods have previously been proposed to derive Ca2+ flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca2+ flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca2+ currents. © 2005 by the Biophysical Society.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Solovey, G. - Dawson, S.P.
PLoS ONE 2010;5(2)
2010

Descripción: Calcium signals are involved in a large variety of physiological processes. Their versatility relies on the diversity of spatiotemporal behaviors that the calcium concentration can display. Calcium entry through inositol 1,4,5-trisphosphate (IP3) receptors (IP3R's) is a key component that participates in both local signals such as "puffs" and in global waves. IP3R's are usually organized in clusters on the membrane of the endoplasmic reticulum and their spatial distribution has important effects on the resulting signal. Recent high resolution observations [1] of Ca2+ puffs offer a window to study intra-cluster organization. The experiments give the distribution of the number of IP3R's that open during each puff without much processing. Here we present a simple model with which we interpret the experimental distribution in terms of two stochastic processes: IP3 binding and unbinding and Ca2+-mediated inter-channel coupling. Depending on the parameters of the system, the distribution may be dominated by one or the other process. The transition between both extreme cases is similar to a percolation process. We show how, from an analysis of the experimental distribution, information can be obtained on the relative weight of the two processes. The largest distance over which Ca2+mediated coupling acts and the density of IP3-bound IP3R's of the cluster can also be estimated. The approach allows us to infer properties of the interactions among the channels of the cluster from statistical information on their emergent collective behavior. © 2010 Solovey, Dawson.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Borodinsky, L.N. - Coso, O.A. - Fiszman, M.L.
J. Neurochem. 2002;80(6):1062-1070
2002

Descripción: In this report we describe our studies on intracellular signals that mediate neurite outgrowth and long-term survival of cerebellar granule cells. The effect of voltage-gated calcium channel activation on neurite complexity was evaluated in cultured cerebellar granule cells grown for 48 h at low density; the parameter measured was the fractal dimension of the cell. We explored the contribution of two intracellular pathways, Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase (MEK1), to the effects of high [K+]e under serum-free conditions. We found that 25 mM KCI (25K) induced an increase in calcium influx through L subtype channels. In neurones grown for 24-48 h under low-density conditions, the activation of these channels induced neurite outgrowth through the activation of Ca2+ calmodulin-dependent protein kinase II. This also produced an increase in long-term neuronal survival with a partial contribution from the MEK1 pathway. We also found that the addition of 25K increased the levels of the phosphorylated forms of Ca2+ calmodulin-dependent protein kinase II and of the extracellular signal-regulated kinases 1 and 2. Neuronal survival under resting conditions is supported by the MEK1 pathway. We conclude that intracellular calcium oscillations can triggered different biological effects depending on the stage of maturation of the neuronal phenotype. Ca2+ calmodulin-dependent protein kinase II activation determines the growth of neurites and the development of neuronal complexity.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Zorrilla De San Martín, J. - Ballestero, J. - Katz, E. - Elgoyhen, A.B. - Fuchs, P.A.
JARO J. Assoc. Res. Otolaryngol. 2007;8(4):474-483
2007

Descripción: The efferent synaptic specialization of hair cells includes a near-membrane synaptic cistern, whose presence suggests a role for internal calcium stores in cholinergic inhibition. Calcium release channels from internal stores include 'ryanodine receptors', whose participation is usually demonstrated by sensitivity to the eponymous plant alkaloid, ryanodine. However, use of this and other store-active compounds on hair cells could be confounded by the unusual pharmacology of the α9α10-containing hair cell nicotinic cholinergic receptor (nAChR), which has been shown to be antagonized by a broad spectrum of compounds. Surprisingly, we found that ryanodine, rather than antagonizing, is a positive modulator of the α9α10 nAChR expressed in Xenopus oocytes, the first such compound to be found. The effect of ryanodine was to increase the apparent affinity and efficacy for acetylcholine (ACh). Correspondingly, ACh-evoked currents through the isolated cholinergic receptors of inner hair cells in excised mouse cochleas were approximately doubled by 200 μM ryanodine, a concentration that inhibits gating of the ryanodine receptor itself. This unusual positive modulation was not unique to the mammalian receptor. The response to ACh of chicken 'short' hair cells likewise was enhanced in the presence of 100 μM ryanodine. This facilitatory effect on current through the AChR could enhance brief (∼1 s) activation of associated calcium-dependent K+ (SK) channels in both chicken short hair cells and rat outer hair cells. This novel effect of ryanodine provides new opportunities for the design of compounds that potentiate α9α10- mediated responses and for potential inner ear therapeutics based on this interaction. © 2007 Association for Research in Otolaryngology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Katz, E. - Elgoyhen, A.B. - Gómez-Casati, M.E. - Knipper, M. - Vetter, D.E. - Fuchs, P.A. - Glowatzki, E.
J. Neurosci. 2004;24(36):7814-7820
2004

Descripción: In the mature cochlea, inner hair cells (IHCs) transduce acoustic signals into receptor potentials, communicating to the brain by synaptic contacts with afferent fibers. Before the onset of hearing, a transient efferent innervation is found on IHCs, mediated by a nicotinic cholinergic receptor that may contain both α9 and α10 subunits. Calcium influx through that receptor activates calcium-dependent (SK2-containing) potassium channels. This inhibitory synapse is thought to disappear after the onset of hearing [after postnatal day 12 (P12)]. We documented this developmental transition using whole-cell recordings from IHCs in apical turns of the rat organ of Corti. Acetylcholine elicited ionic currents in 88-100% of IHCs between P3 and P14, but in only 1 of 11 IHCs at P16-P22. Potassium depolarization of efferent terminals caused IPSCs in 67% of IHCs at P3, in 100% at P7-P9, in 93% at P10-P12, but in only 40% at P13-P14 and in none of the IHCs tested between P16 and P22. Earlier work had shown by in situ hybridization that α9 mRNA is expressed in adult IHCs but that α10 mRNA disappears after the onset of hearing. In the present study, antibodies to α10 and to the associated calcium-dependent (SK2) potassium channel showed a similar developmental loss. The correlated expression of these gene products with functional innervation suggests that Alpha10 and SK2, but not Alpha9, are regulated by synaptic activity. Furthermore, this developmental knock-out of α10, but not α9, supports the hypothesis that functional nicotinic acetylcholine receptors in hair cells are heteromers containing both these subunits.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Katz, E. - Protti, D.A. - Ferro, P.A. - Rosato Siri, M.D. - Uchitel, O.D.
BR. J. PHARMACOL. 1997;121(8):1531-1540
1997

Descripción: 1. The effects of the voltage-dependent calcium channel (VDCC) blockers ω-agatoxin IVA (ω-AgaIVA), ω-conotoxin GVIA (ω-CgTx), ω-conotoxin MVIIC (ω-MVIIC) and ω-conotoxin MVIID (ω-MVIID) were evaluated on transmitter release in the mouse diaphragm preparation. The effects of ω-AgaIVA and ω-MVIIC were also evaluated on the perineurial calcium and calcium-dependent potassium currents, I(ca), and I(K(Ca)), respectively, in the mouse levator auris preparation. 2. The P- and Q-type VDCC blocker ω-AgaIVA (100 nM) and P- Q- and N-type channel blockers ω-MVIIC (1 μM) and ω-MVIID (3 μM) strongly reduced transmitter release (> 80-90% blockade) whereas the selective N-type channel blocker ω-CgTx (5 μM) was ineffective. 3. The process of release was much more sensitive to ω-MVIIC (IC50 = 39 nM) than to ω-MVIID (IC50 = 1.4 μM). After almost completely blocking transmitter release (quantal content ~0.3% of its control value) with 3 μM ω-MVIIC, elevating the external [Ca2+] from 2 to 10 mM induced an increase of ~20 fold on the quantal content of the endplate potential (e.p.p.) (from 0.2 ± 0.04 to 4.8 ± 1.4). 4. Nerve-evoked transmitter release in a low Ca2+-high Mg2+ medium (low release probability, quantal content = 2 ± 0.1) had the same sensitivity to ω-AgaIVA (IC50 = 16.8 nM) as that in normal saline solutions. In addition, K+-evoked transmitter release was also highly sensitive to the action of this toxin (IC50 = 11.5 nM; 100 nM > 95% blockade). The action of ω-AgaIVA on transmitter release could be reversed by toxin washout if the experiments were carried out at 31-33°C. Conversely, the effect of ω-AgaIVA persisted even after two hours of toxin washout at room temperature. 5. Both the calcium and calcium-dependent potassium presynaptic currents, I(ca), and I(K(Ca)), respectively, were highly sensitive to low concentrations (10-30 nM) of ω-AgaIVA. The I(ca), and the I(K(Ca)) were also strongly reduced by 1 μM ω-MVIIC. The most marked difference between the action of these two toxins was the long incubation times required to achieve maximal effects with ω-MVIIC. 6. In summary these results provide more evidence that synaptic transmission at the mammalian neuromuscular junction is mediated by Ca2+ entry through P- and/or Q-type calcium channels.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Gonzalez, L.E. - Kotler, M.L. - Vattino, L.G. - Conti, E. - Reisin, R.C. - Mulatz, K.J. - Snutch, T.P. - Uchitel, O.D.
J. Neurochem. 2011;119(4):826-838
2011

Descripción: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a gradual loss of motoneurons. The majority of ALS cases are associated with a sporadic form whose etiology is unknown. Several pieces of evidence favor autoimmunity as a potential contributor to sporadic ALS pathology. To gain understanding concerning possible antigens interacting with IgGs from sporadic ALS patients (ALS-IgGs), we studied immunoreactivity against neuromuscular junction (NMJ), spinal cord and cerebellum of mice with and without the Ca V2.1 pore-forming subunit of the P/Q-type voltage-gated calcium (Ca 2+) channel. ALS-IgGs showed a strong reactivity against NMJs of wild-type diaphragms. ALS-IgGs also increased muscle miniature end-plate potential frequency, suggesting a functional role for ALS-IgGs on synaptic signaling. In support, in mice lacking the Ca V2.1 subunit ALS-IgGs showed significantly reduced NMJ immunoreactivity and did not alter spontaneous acetylcholine release. This difference in reactivity was absent when comparing N-type Ca 2+ channel wild-type or null mice. These results are particularly relevant because motoneurons are known to be early pathogenic targets in ALS. Our findings add further evidence supporting autoimmunity as one of the possible mechanisms contributing to ALS pathology. They also suggest that serum autoantibodies in a subset of ALS patients would interact with NMJ proteins down-regulated when P/Q-type channels are absent. © 2011 International Society for Neurochemistry.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Fraiman, D. - Pando, B. - Dargan, S. - Parker, I. - Dawson, S.P.
Biophys. J. 2006;90(11):3897-3907
2006

Descripción: Puffs are localized Ca2+ signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are analogous to the sparks of myocytes and are believed to be the result of the liberation of Ca2+ from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. In this article, we analyze sequences of puffs that occur at the same site to help elucidate the mechanisms underlying puff dynamics. In particular, we show a dependence of the interpuff time on the amplitude of the preceding puff, and of the amplitude of the following puff on the preceding interval. These relationships can be accounted for by an inhibitory role of the Ca2+ that is liberated during puffs. We construct a stochastic model for a cluster of IP3 receptor/channels that quantitatively replicates the observed behavior, and we determine that the characteristic time for a channel to escape from the inhibitory state is of the order of seconds. © 2006 by the Biophysical Society.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Hirata, K. - Nakagawa, M. - Urbano, F.J. - Rosato-Siri, M.D. - Moreira, J.E. - Uchitel, O.D. - Sugimori, M. - Llinás, R.
Proc. Natl. Acad. Sci. U. S. A. 1999;96(25):14588-14593
1999

Descripción: Bath application of compound T-588, a neuroprotective agent, reduced paired-pulse and repetitive-pulse facilitation at mammalian and crustacean neuromuscular junctions. In addition, it reduced voltage-gated sodium and potassium currents in a use-dependent fashion, but had only a small effect on the presynaptic Ca 2+ conductance. By contrast, it blocked FM 1-43 vesicular uptake but not its release, in both species. Postsynaptically, T-588 reduced acetylcholine currents at the mammalian junction in a voltage-independent manner, but had no effect on the crayfish glutamate junction. All of these effects were rapidly reversible and were observed at concentrations close to the compound's acute protective level. We propose that this set of mechanisms, which reduces high-frequency synaptic transmission, is an important contributory factor in the neuroprotective action of T-588.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Taranda, J. - Ballestero, J.A. - Hiel, H. - De Souza, F.S.J. - Wedemeyer, C. - Gómez-Casati, M.E. - Lipovsek, M. - Vetter, D.E. - Fuchs, P.A. - Katz, E. - Elgoyhen, A.B.
JARO J. Assoc. Res. Otolaryngol. 2009;10(3):397-406
2009

Descripción: Efferent inhibition of cochlear hair cells is mediated by α9α10 nicotinic cholinergic receptors (nAChRs) functionally coupled to calcium-activated, small conductance (SK2) potassium channels. Before the onset of hearing, efferent fibers transiently make functional cholinergic synapses with inner hair cells (IHCs). The retraction of these fibers after the onset of hearing correlates with the cessation of transcription of the Chrna10 (but not the Chrna9) gene in IHCs. To further analyze this developmental change, we generated a transgenic mice whose IHCs constitutively express α10 into adulthood by expressing the α10 cDNA under the control of the Pou4f3 gene promoter. In situ hybridization showed that the α10 mRNA is expressed in IHCs of 8-week-old transgenic mice, but not in wild-type mice. Moreover, this mRNA is translated into a functional protein, since IHCs from P8-P10 α10 transgenic mice backcrossed to a Chrna10 -/- background (whose IHCs have no cholinergic function) displayed normal synaptic and acetylcholine (ACh)-evoked currents in patch-clamp recordings. Thus, the α10 transgene restored nAChR function. However, in the α10 transgenic mice, no synaptic or ACh-evoked currents were observed in P16-18 IHCs, indicating developmental down-regulation of functional nAChRs after the onset of hearing, as normally observed in wild-type mice. The lack of functional ACh currents correlated with the lack of SK2 currents. These results indicate that multiple features of the efferent postsynaptic complex to IHCs, in addition to the nAChR subunits, are down-regulated in synchrony after the onset of hearing, leading to lack of responses to ACh. © 2009 Association for Research in Otolaryngology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ballestero, J. - de San Martín, J.Z. - Goutman, J. - Elgoyhen, A.B. - Fuchs, P.A. - Katz, E.
J. Neurosci. 2011;31(41):14763-14774
2011

Descripción: In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHC function. How this process is orchestrated at the synaptic level remains unknown. In the present study, MOC firing was evoked by electrical stimulation in an isolated mouse cochlear preparation, while OHCs postsynaptic responses were monitored by whole-cell recordings. These recordings confirmed that electrically evoked IPSCs (eIPSCs) are mediated solely by α9β10 nAChRs functionally coupled to calcium-activated SK2 channels. Synaptic release occurred with low probability when MOC-OHC synapses were stimulated at 1 Hz. However, as the stimulation frequency was raised, the reliability of release increased due to presynaptic facilitation. In addition, the relatively slow decay of eIPSCs gave rise to temporal summation at stimulation frequencies >10 Hz. The combined effect of facilitation and summation resulted in a frequency-dependent increase in the average amplitude of inhibitory currents in OHCs. Thus, we have demonstrated that short-term plasticity is responsible for shaping MOC inhibition and, therefore, encodes the transfer function from efferent firing frequency to the gain of the cochlear amplifier. © 2011 the authors.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Elgoyhen, A.B. - Vetter, D.E. - Katz, E. - Rothlin, C.V. - Heinemann, S.F. - Boulter, J.
Proc. Natl. Acad. Sci. U. S. A. 2001;98(6):3501-3506
2001

Descripción: We report the cloning and characterization of rat α10, a previously unidentified member of the nicotinic acetylcholine receptor (nAChR) subunit gene family. The protein encoded by the α10 nAChR subunit gene is most similar to the rat α9 nAChR, and both α9 and α10 subunit genes are transcribed in adult rat mechanosensory hair cells. Injection of Xenopus laevis oocytes with α10 cRNA alone or in pairwise combinations with either α2-α6 or β2-β4 subunit cRNAs yielded no detectable ACh-gated currents. However, coinjection of α9 and α10 cRNAs resulted in the appearance of an unusual nAChR subtype. Compared with homomeric α9 channels, the α9α10 nAChR subtype displays faster and more extensive agonist-mediated desensitization, a distinct current-voltage relationship, and a biphasic response to changes in extracellular Ca2+ ions. The pharmacological profiles of homomeric α9 and heteromeric α9α10 nAChRs are essentially indistinguishable and closely resemble those reported for endogenous cholinergic eceptors found in vertebrate hair cells. Our data suggest that efferent modulation of hair cell function occurs, at least in part, through heteromeric nAChRs assembled from both α9 and α10 subunits.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo