por que contenga las palabras

Busqueda avanzada

3 documentos corresponden a la consulta.
Palabras contadas: sulfasalazine: 8
Boccia, M. - Freudenthal, R. - Blake, M. - De La Fuente, V. - Acosta, G. - Baratti, C. - Romano, A.
J. Neurosci. 2007;27(49):13436-13445
2007

Descripción: Initially, memory is labile and requires consolidation to become stable. However, several studies support that consolidated memories can undergo a new period of lability after retrieval. The mechanistic differences of this process, termed reconsolidation, with the consolidation process are under debate, including the participation of hippocampus. Up to this point, few reports describe molecular changes and, in particular, transcription factor (TF) involvement in memory restabilization. Increasing evidence supports the participation of the TF nuclear factor-κB (NF-κB) in memory consolidation. Here, we demonstrate that the inhibition of NF-κB after memory reactivation impairs retention of a hippocampal-dependent inhibitory avoidance task in mice. We used two independent disruptive strategies to reach this conclusion. First, we administered intracerebroventricular or intrahippocampal sulfasalazine, an inhibitor of IKK (IκB kinase), the kinase that activates NF-κB. Second, we infused intracerebroventricular or intrahippocampal κB decoy, a direct inhibitor of NF-κB consisting of a double-stranded DNA oligonucleotide that contains the κB consensus sequence. When injected immediately after memory retrieval, sulfasalazine or κB decoy (Decoy) impaired long-term retention. In contrast, a one base mutated κB decoy (mDecoy) had no effect. Furthermore, we also found NF-κB activation in the hippocampus, with a peak 15 min after memory retrieval. This activation was earlier than that found during consolidation. Together, these results indicate that NF-κB is an important transcriptional regulator in memory consolidation and reconsolidation in hippocampus, although the temporal kinetics of activation differs between the two processes. Copyright © 2007 Society for Neuroscience.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Merlo, E. - Freudenthal, R. - Maldonado, H. - Romano, A.
Learn. Mem. 2005;12(1):23-29
2005

Descripción: Several studies support that stored memories undergo a new period of consolidation after retrieval. It is not known whether this process, termed reconsolidation, requires the same transcriptional mechanisms involved in consolidation. Increasing evidence supports the participation of the transcription factor NF-κB in memory. This was initially demonstrated in the crab Chasmagnathus model of associative contextual memory, in which re-exposure to the training context induces a well characterized reconsolidation process. Here we studied the role of NF-κB in reconsolidation. NF-κB was specifically activated in trained animals re-exposed to the training context but not to a different context. NF-κB was not activated when animals were re-exposed to the context after a weak training protocol insufficient to induce long-term memory. A specific inhibitor of the NF-κB pathway, sulfasalazine, impaired reconsolidation when administered 20 min before re-exposure to the training context but was not effective when a different context was used. These findings indicate for the first time that NF-κB is activated specifically by retrieval and that this activation is required for memory reconsolidation, supporting the view that this molecular mechanism is required in both consolidation and reconsolidation.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Merlo, E. - Romano, A.
PLoS ONE 2008;3(11)
2008

Descripción: In contextual memories, an association between a positive or negative reinforcement and the contextual cues where the reinforcement occurs is formed. The re-exposure to the context without reinforcement can lead to memory extinction or reconsolidation, depending on the number of events or duration of a single event of context re-exposure. Extinction involves the temporary waning of the previously acquired conditioned response. The molecular processes underlying extinction and the mechanisms which determine if memory will reconsolidate or extinguish after retrieval are not well characterized, particularly the role of transcription factors and gene expression. Here we studied the participation of a transcription factor, NF-κB, in memory extinction. In the crab context-signal memory, the activation of NF-κB plays a critical role in consolidation and reconsolidation, memory processes that are well characterized in this model. The administration of a NF-κB inhibitor, sulfasalazine prior to extinction session impeded spontaneous recovery. Moreover, reinstatement experiments showed that the original memory was not affected and that NF-κB inhibition by sulfasalazine impaired spontaneous recovery strengthening the ongoing memory extinction process. Interestingly, in animals with fully consolidated memory, a brief re-exposure to the training context induced neuronal NF-κB activation and reconsolidation, while prolonged re-exposure induced NF-κB inhibition and memory extinction. These data constitutes a novel insight into the molecular mechanisms involved in the switch between memory reconsolidation and extinction. Moreover, we propose the inhibition of NF-κB as the engaged mechanism underlying extinction, supporting a novel approach for the pharmacological enhancement of this memory process. The accurate description of the molecular mechanisms that support memory extinction is potentially useful for developing new strategies and drug candidates for therapeutic treatments of the maladaptive memory disorders such as post-traumatic stress, phobias, and drug addiction. © 2008 Merlo, Romano.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo