por que contenga las palabras

Busqueda avanzada

9 documentos corresponden a la consulta.
Palabras contadas: conformational: 25, change: 122
Ferreiro, D.U. - Hegler, J.A. - Komives, E.A. - Wolynes, P.G.
Proc. Natl. Acad. Sci. U. S. A. 2011;108(9):3499-3503
2011

Descripción: Natural protein domains must be sufficiently stable to fold but often need to be locally unstable to function. Overall, strong energetic conflicts are minimized in native states satisfying the principle of minimal frustration. Local violations of this principle open up possibilities to form the complex multifunnel energy landscapes needed for large-scale conformational changes. We survey the local frustration patterns of allosteric domains and show that the regions that reconfigure are often enriched in patches of highly frustrated interactions, consistent both with the idea that these locally frustrated regions may act as specific hinges or that proteins may "crack" in these locations. On the other hand, the symmetry of multimeric protein assemblies allows near degeneracy by reconfiguring while maintaining minimally frustrated interactions. We also anecdotally examine some specific examples of complex conformational changes and speculate on the role of frustration in the kinetics of allosteric change.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ballicora, M.A. - Wolosiuk, R.A.
Eur. J. Biochem. 1994;222(2):467-474
1994

Descripción: To characterize the mechanism of chloroplast fructose‐1,6‐bisphosphatase activation, we have examined kinetic and structural changes elicited by protein perturbants and reductants. At variance with its well‐known capacity for enzyme inactivation, 150 mM sodium trichloroacetate yielded an activatable chloroplast fructose‐1,6‐bisphosphatase in the presence of 1.0 mM fructose 1,6‐bisphosphate and 0.1 mM Ca2+. Other sugar bisphosphates did not replace fructose 1,6‐bisphosphate whereas Mg2+ and Mn2+ were functional in place of Ca2+. Variations of the emission fluorescence of intrinsic fluorophores and a noncovalently bound extrinsic probe [2‐(P‐toluidinyl)naphthalene‐6‐sulfonate] indicated the presence of conformations different from the native form. A similar conclusion was drawn from the analysis of absorption spectra by means of fourth‐derivative spectrophotometry. The effect of these conformational changes on the reductive process was studied by subsequently incubating the enzyme with dithiothreitol. The reaction of chloroplast fructose‐1,6‐bisphosphatase with dithiothreitol was accelerated 13‐fold by the chaotropic anion: second‐order rate constants were 48.1 M−1· min−1 and 3.7 M−1· min−1 in the presence and in the absence of trichloroacetate, respectively. Thus, the enhancement of the reductive activation by compounds devoid of redox activity illustrated that the modification of intramolecular noncovalent interactions of chloroplast fructose‐1,6‐bisphosphatase plays an essential role in the conversion of enzyme disulfide bonds to sulfhydryl groups. In consequence, a conformational change would operate concertedly with the reduction of disulfide bridges in the light‐dependent activation mediated by the ferredoxin–thioredoxin system. Copyright © 1994, Wiley Blackwell. All rights reserved
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Piwien-Pilipuk, G. - Kanelakis, K.C. - Ghini, A.A. - Lantos, C.P. - Litwack, G. - Burton, G. - Galigniana, M.D.
Biochim. Biophys. Acta Mol. Cell Res. 2002;1589(1):31-48
2002

Descripción: The alkylation of amino groups of the mineralocorticoid receptor (MR) with pyridoxal 5′-phosphate or 2,4,6-trinitrobenzenesulphonate (TNBS) under controlled conditions modifies only one lysyl residue, which accounts for a 70% inhibition of steroid binding capacity. The Kd of aldosterone for MR is not affected by the treatment, but the total number of binding sites is greatly decreased. The modified receptor is capable of dynamically conserving its association with the hsp90-based heterocomplex. Importantly, the binding of natural agonists protects the hormone binding capacity of the MR from the inactivating action of alkylating agents. In contrast, antagonistic steroids are totally incapable of providing such protection. Like the antagonistic ligands, and despite its potent mineralocorticoid biological effect, the sole MR specific synthetic agonist known to date, 11,19-oxidoprogesterone (11-OP), shows no protective effect upon treatment of the MR with pyridoxal 5′-phosphate or TNBS. Limited digestion of the MR with α-chymotrypsin generates a 34 kDa fragment, which becomes totally resistant to digestion upon binding of natural agonists, but not upon binding of antagonists. Interestingly, the synthetic 21-deoxypregnanesteroid 11-OP exhibits an intermediate pattern of proteolytic degradation, suggesting that the conformational change generated in the MR is not equivalent to that induced by antagonists or natural agonists. We conclude that in the first steps of activation, the MR changes its conformation upon binding of the ligand. However, the nature of this conformational change depends on the nature of the ligand. The experimental evidence shown in this work suggests that a single lysyl group can determine the hormone specificity of the MR. © 2002 Elsevier Science B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Dodes Traian, M.M. - Cattoni, D.I. - Levi, V. - González Flecha, F.L.
PLoS ONE 2012;7(6)
2012

Descripción: Lipid-protein interactions play an essential role in the regulation of biological function of integral membrane proteins; however, the underlying molecular mechanisms are not fully understood. Here we explore the modulation by phospholipids of the enzymatic activity of the plasma membrane calcium pump reconstituted in detergent-phospholipid mixed micelles of variable composition. The presence of increasing quantities of phospholipids in the micelles produced a cooperative increase in the ATPase activity of the enzyme. This activation effect was reversible and depended on the phospholipid/detergent ratio and not on the total lipid concentration. Enzyme activation was accompanied by a small structural change at the transmembrane domain reported by 1-aniline-8-naphtalenesulfonate fluorescence. In addition, the composition of the amphipilic environment sensed by the protein was evaluated by measuring the relative affinity of the assayed phospholipid for the transmembrane surface of the protein. The obtained results allow us to postulate a two-stage mechanistic model explaining the modulation of protein activity based on the exchange among non-structural amphiphiles at the hydrophobic transmembrane surface, and a lipid-induced conformational change. The model allowed to obtain a cooperativity coefficient reporting on the efficiency of the transduction step between lipid adsorption and catalytic site activation. This model can be easily applied to other phospholipid/detergent mixtures as well to other membrane proteins. The systematic quantitative evaluation of these systems could contribute to gain insight into the structure-activity relationships between proteins and lipids in biological membranes. © 2012 Dodes Traian et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Fernández, P.V. - Quintana, I. - Cerezo, A.S. - Caramelo, J.J. - Pol-Fachin, L. - Verli, H. - Estevez, J.M. - Ciancia, M.
J. Biol. Chem. 2013;288(1):223-233
2013

Descripción: A highly sulfated 3-linked β-arabinan (Ab1) with arabinose in the pyranose form was obtained from green seaweed Codium vermilara (Bryopsidales). It comprised major amounts of units sulfated on C-2 and C-4 and constitutes the first polysaccharide of this type isolated in the pure form and fully characterized. Ab1 showed anticoagulant activity by global coagulation tests. Less sulfated arabinans obtained from the same seaweed have less or no activity. Ab1 exerts its activity through direct and indirect (antithrombin- and heparin cofactor II-mediated) inhibition of thrombin. Direct thrombin inhibition was studied in detail. By native PAGE, it was possible to detect formation of a complex between Ab1 and human thrombin (HT). Ab1 binding to HT was measured by fluorescence spectroscopy. CD spectra of the Ab1 complex suggested that ligand binding induced a small conformational change on HT. Ab1-thrombin interactions were studied by molecular dynamic simulations using the persulfated octasaccharide as model compound. Most carbohydrate-protein contacts would occur by interaction of sulfate groups with basic amino acid residues on the surface of the enzyme, more than 60% of them being performed by the exosite 2-composing residues. In these interactions, the sulfate groups on C-2 were shown to interact more intensely with the thrombin structure. In contrast, the disulfated oligosaccharide does not promote major conformational modifications at the catalytic site when complexed to exosite 1. These results show that this novel pyranosic sulfated arabinan Ab1 exerts its anticoagulant activity by a mechanism different from those found previously for other sulfated polysaccharides and glycosaminoglycans. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Stortz, C.A.
Arkivoc 2005;2005(12):22-35
2005

Descripción: The adiabatic potential energy surface (PES) of β-4-linked mannobiose was obtained using the MM3 force field at ε=3 and ε=80, and plotted as contour maps and as 2D graphs representing the energy vs. the ψ angle. The surfaces of the corresponding trisaccharide were also obtained and represented by a single 3D contour map for which the energy is plotted against the two ψ glycosidic angles. The PES of the disaccharide contains a low-energy well comprising two different minima, and three more minima in different locations. No major change was observed by changing the dielectric constant. For the trisaccharide, four main minima were observed, located within one minimum-energy region. The minima have a geometry close to that experimentally obtained for mannobiose, mannotriose and mannan I in solid state, but differ from that expected in aqueous solutions. The flexibility of the glycosidic linkage increases at higher dielectric constant, whereas it decreases for the linkage closer to the reducing end when passing from the di- to the trisaccharide. ©ARKAT.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Oliveira, A. - Singh, S. - Bidon-Chanal, A. - Forti, F. - Martí, M.A. - Boechi, L. - Estrin, D.A. - Dikshit, K.L. - Luque, F.J.
PLoS ONE 2012;7(11)
2012

Descripción: The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O 2 and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O 2 /CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN. © 2012 Oliveira et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Mohana-Borges, R. - Silva, J.L. - Ruiz-Sanz, J. - De Prat-Gay, G.
Proc. Natl. Acad. Sci. U. S. A. 1999;96(14):7888-7893
1999

Descripción: The noncovalent complex formed by the association of two fragments of chymotrypsin inhibitor-2 is reversibly denatured by pressure in the absence of chemical denaturants. On pressure release, the complex returned to its original conformation through a biphasic reaction, with first-order rate constants of 0.012 and 0.002 s-1, respectively. The slowest phase arises from an interconversion of the pressure-denatured state, as revealed by double pressure-jump experiments. Below 5 μM, the process was concentration dependent with a second-order rate constant of 1,700 s-1 M-1. Fragment association at atmospheric pressure showed a similar break in the order of the reaction above 5 μM, but both first- and second-order folding/association rates are 2.5 times faster than those for the refolding of the pressure-denatured state. Although the folding rates of the intact protein and the association of the fragments displayed nonlinear Eyring behavior for the temperature dependence, refolding of the pressure-denatured complex showed a linear response. The negligible heat capacity of activation reflects a balance of minimal change in the burial of residues from the pressure-denatured state to the transition state. If we add the higher energy barrier in the refolding of the pressure-denatured state, the rate differences must lie in the structure of this state, which has to undergo a structural rearrangement. This clearly differs from the conformational flexibility of the isolated fragments or the largely unfolded denatured state of the intact protein in acid and provides insight into denatured states of proteins under folding conditions.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Disalvo, E.A. - Lairion, F. - Martini, F. - Tymczyszyn, E. - Frías, M. - Almaleck, H. - Gordillo, G.J.
Biochim. Biophys. Acta Biomembr. 2008;1778(12):2655-2670
2008

Descripción: The scope of the present review focuses on the interfacial properties of cell membranes that may establish a link between the membrane and the cytosolic components. We present evidences that the current view of the membrane as a barrier of permeability that contains an aqueous solution of macromolecules may be replaced by one in which the membrane plays a structural and functional role. Although this idea has been previously suggested, the present is the first systematic work that puts into relevance the relation water-membrane in terms of thermodynamic and structural properties of the interphases that cannot be ignored in the understanding of cell function. To pursue this aim, we introduce a new definition of interphase, in which the water is organized in different levels on the surface with different binding energies. Altogether determines the surface free energy necessary for the structural response to changes in the surrounding media. The physical chemical properties of this region are interpreted in terms of hydration water and confined water, which explain the interaction with proteins and could affect the modulation of enzyme activity. Information provided by several methodologies indicates that the organization of the hydration states is not restricted to the membrane plane albeit to a region extending into the cytoplasm, in which polar head groups play a relevant role. In addition, dynamic properties studied by cyclic voltammetry allow one to deduce the energetics of the conformational changes of the lipid head group in relation to the head-head interactions due to the presence of carbonyls and phosphates at the interphase. These groups are, apparently, surrounded by more than one layer of water molecules: a tightly bound shell, that mostly contributes to the dipole potential, and a second one that may be displaced by proteins and osmotic stress. Hydration water around carbonyl and phosphate groups may change by the presence of polyhydroxylated compounds or by changing the chemical groups esterified to the phosphates, mainly choline, ethanolamine or glycerol. Thus, surface membrane properties, such as the dipole potential and the surface pressure, are modulated by the water at the interphase region by changing the structure of the membrane components. An understanding of the properties of the structural water located at the hydration sites and the functional water confined around the polar head groups modulated by the hydrocarbon chains is helpful to interpret and analyze the consequences of water loss at the membranes of dehydrated cells. In this regard, a correlation between the effects of water activity on cell growth and the lipid composition is discussed in terms of the recovery of the cell volume and their viability. Critical analyses of the properties of water at the interface of lipid membranes merging from these results and others from the literature suggest that the interface links the membrane with the aqueous soluble proteins in a functional unit in which the cell may be considered as a complex structure stabilized by water rather than a water solution of macromolecules surrounded by a semi permeable barrier. © 2008 Elsevier B.V. All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo