por que contenga las palabras

Busqueda avanzada

5 documentos corresponden a la consulta.
Palabras contadas: permease: 15
Carrillo, C. - Canepa, G.E. - Giacometti, A. - Bouvier, L.A. - Miranda, M.R. - De Los Milagros Camara, M. - Pereira, C.A.
FEMS Microbiol. Lett. 2010;306(2):97-102
2010

Descripción: Trypanosoma cruzi, the aetiological agent of Chagas' disease, is exposed to extremely different environment conditions during its life cycle, and transporters are key molecules for its adaptive regulation. Amino acids, and particularly arginine, are essential components in T. cruzi metabolism. In this work, a novel T. cruzi arginine permease was identified by screening different members of the AAAP family (amino acid/auxin permeases) in yeast complementation assays using a toxic arginine analogue. One gene candidate, TcAAAP411, was characterized as a very specific, high-affinity, l-arginine permease. This work is the first identification of the molecular components involved specifically in amino acid transport in T. cruzi and provides new insights for further validation of the TcAAAP family as functional permeases. © 2010 Federation of European Microbiological Societies.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Garcia, S.C. - Moretti, M.B. - Batlle, A.
FEMS Microbiol. Lett. 2000;184(2):219-224
2000

Descripción: The first specific precursor of porphyrin biosynthesis is δ-aminolevulinic acid. δ-Aminolevulinic acid enters Saccharomyces cerevisiae cells through the γ-aminobutyric acid specific permease Uga4p. It was described that this permease is inducible by γ-aminobutyric acid and its regulation involves several specific and pleiotropic transcriptional factors. However, some studies showed that under certain growth conditions the synthesis of Uga4p was not dependent on the presence of γ-aminobutyric acid. To study the effect of the trans-acting factors Uga43p, Uga3p, Uga35p, Ure2p and Gln3p on the expression of UGA4, we measured γ-aminobutyric acid and δ-aminolevulinic acid uptake in yeast mutant cells, lacking one of these regulatory factors, grown under different conditions. Experiments analyzing the UGA4 promoter using a fusion construction UGA4::lacZ were also carried out. The results show that the constitutive expression of the UGA4 gene found in cells under certain growth conditions depends on the presence of Uga3p and Uga35p. In contrast, Gln3p and Ure2p do not seem to have any effect on this constitutive mechanism. Copyright (C) 2000 Federation of European Microbiological Societies.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Ruiz, J. - Haneburger, I. - Jung, K.
J. Bacteriol. 2011;193(10):2536-2548
2011

Descripción: Expression of lysP, which encodes the lysine-specific transporter LysP in Escherichia coli, is regulated by the concentration of exogenous available lysine. In this study, the LysR-type transcriptional regulator ArgP was identified as the activator of lysP expression. At lysine concentrations higher than 25 μM, lysP expression was shut off and phenocopied an argP deletion mutant. Purified ArgP-His 6 bound to the lysP promoter/control region at a sequence containing a conserved T-N 11-A motif. Its affinity increased in the presence of lysine but not in the presence of the other known coeffector, arginine. In vivo data suggest that lysine-loaded ArgP and arginine-loaded ArgP compete at the lysP promoter. We propose that lysine-loaded ArgP prevents lysP transcription at the promoter clearance step, as described for the lysine-dependent regulation of argO (R. S. Laishram and J. Gowrishankar, Genes Dev. 21:1258-1272, 2007). The global regulator Lrp also bound to the lysP promoter/control region. An lrp mutant exhibited reduced lysP expression in the absence of external lysine. These results indicate that ArgP is a major regulator of lysP expression but that Lrp modulates lysP transcription under lysine-limiting conditions. © 2011, American Society for Microbiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Cardillo, S.B. - Moretti, M.B. - García, S.C.
Eukaryotic Cell 2010;9(8):1262-1271
2010

Descripción: The Saccharomyces cerevisiae UGA4 gene encodes a permease capable of importing γ-aminobutyric acid (GABA) and δ-aminolevulinic acid (ALA) into the cell. GABA-dependent induction of this permease requires at least two positive-acting proteins, the specific factor Uga3 and the pleiotropic factor Uga35/Dal81. UGA4 is subjected to a very complex regulation, and its induction is affected by the presence of extracellular amino acids; this effect is mediated by the plasma membrane amino acid sensor SPS. Our results show that leucine affects UGA4 induction and that the SPS sensor and the downstream effectors Stp1 and Stp2 participate in this regulation. Moreover, we found that the Uga3 and Uga35/Dal81 transcription factors bind to the UGA4 promoter in a GABA-dependent manner and that this binding is impaired by the presence of leucine. We also found that the Leu3 transcription factor negatively regulates UGA4 transcription, although this seems to be through an indirect mechanism. © 2010, American Society for Microbiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Luzzani, C. - Cardillo, S.B. - Moretti, M.B. - García, S.C.
Microbiology 2007;153(11):3677-3684
2007

Descripción: The Saccharomyces cerevisiae UGA4 gene, which encodes the γ-aminobutyric acid (GABA) and δ-aminolaevulinic acid (ALA) permease, is well known to be regulated by the nitrogen source. Its expression levels are low in the presence of a rich nitrogen source but are higher when a poor nitrogen source is used. In addition, GABA can induce UGA4 expression when cells are grown with proline but not when they are grown with ammonium. Although vast amounts of evidence have been gathered about UGA4 regulation by nitrogen, little is known about its regulation by the carbon source. Using glucose and acetate as rich and poor carbon source respectively, this work aimed to shed light on hitherto unclear aspects of the regulation of this gene. In poor nitrogen conditions, cells grown with acetate were found to have higher UGA4 basal expression levels than those grown with glucose, and did not show UGA4 induction in response to GABA. Analysis of the expression and subcellular localization of the transcription factors that regulate UGA4 as well as partial deletions and site-directed mutations of the UGA4 promoter region suggested that there are two parallel pathways that act in regulating this gene by the carbon source. Furthermore, the results demonstrate the existence of a new factor operating in UGA4 regulation. © 2007 SGM.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo