por que contenga las palabras

Busqueda avanzada

5 documentos corresponden a la consulta.
Palabras contadas: neutrophil: 28
Salamone, G.V. - Petracca, Y. - Bass, J.I.F. - Rumbo, M. - Nahmod, K.A. - Gabelloni, M.L. - Vermeulen, M.E. - Matteo, M.J. - Geffner, J.R. - Trevani, A.S.
Lab. Invest. 2010;90(7):1049-1059
2010

Descripción: Neutrophils are short-lived cells that rapidly undergo apoptosis. However, their survival can be regulated by signals from the environment. Flagellin, the primary component of the bacterial flagella, is known to induce neutrophil activation. In this study we examined the ability of flagellin to modulate neutrophil apoptosis. Neutrophils cultured for 12 and 24 h in the presence of flagellin from Salmonella thyphimurim at concentrations found in pathological situations underwent a marked prevention of apoptosis. In contrast, Helicobacter pylori flagellin did not affect neutrophil survival, suggesting that Salmonella flagellin exerts the antiapoptotic effect by interacting with TLR5. The delaying in apoptosis mediated by Salmonella flagellin was coupled to higher expression levels of the antiapoptotic protein Mcl-1 and lower levels of activated caspase-3. Analysis of the signaling pathways indicated that Salmonella flagellin induced the activation of the p38 and ERK1/2 MAPK pathways as well as the PI3K/Akt pathway. Furthermore, it also stimulated IBα degradation and the phosphorylation of the p65 subunit, suggesting that Salmonella flagellin also triggers NF-B activation. Moreover, the pharmacological inhibition of ERK1/2 pathway and NF-B activation partially prevented the antiapoptotic effects exerted by flagellin. Finally, the apoptotic delaying effect exerted by flagellin was also evidenced when neutrophils were cultured with whole heat-killed S. thyphimurim. Both a wild-type and an aflagellate mutant S. thyphimurim strain promoted neutrophil survival; however, when cultured in low bacteria/neutrophil ratios, the flagellate bacteria showed a higher capacity to inhibit neutrophil apoptosis, although both strains showed a similar ability to induce neutrophil activation. Taken together, our results indicate that flagellin delays neutrophil apoptosis by a mechanism partially dependent on the activation of ERK1/2 MAPK and NF-B. The ability of flagellin to delay neutrophil apoptosis could contribute to perpetuate the inflammation during infections with flagellated bacteria. © 2010 USCAP, Inc All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Fuxman Bass, J.I. - Gabelloni, M.L. - Alvarez, M.E. - Vermeulen, M.E. - Russo, D.M. - Zorreguieta, Á. - Geffner, J.R. - Trevani, A.S.
Lab. Invest. 2008;88(9):926-937
2008

Descripción: Bacterial DNA activates neutrophils through a CpG- and TLR9-independent mechanism. Neutrophil activation does not require DNA internalization, suggesting that it results from the interaction of bacterial DNA with a neutrophil surface receptor. The aim of this study was to characterize the interaction of bacterial DNA with the neutrophil surface. Bacterial DNA binding showed saturation and was inhibited by unlabeled DNA but not by other polyanions like yeast tRNA and poly-A. Resembling the conditions under which bacterial DNA triggers neutrophil activation, binding was not modified in the presence or absence of calcium, magnesium or serum. Treatment of neutrophils with proteases not only dramatically reduced bacterial DNA binding but also inhibited neutrophil activation induced by bacterial DNA. Experiments performed with DNA samples of different lengths obtained after digestion of bacterial DNA with DNase showed that only DNA fragments greater than ≈170-180 nucleotides competed bacterial DNA binding and retained the ability to trigger cell activation. Treatment of neutrophils with chemoattractants or conventional agonists significantly increased bacterial DNA binding. Moreover, neutrophils that underwent transmigration through human endothelial cell monolayers even in the absence of chemoattractants, exhibited higher binding levels of bacterial DNA. Together, our findings provide evidence that binding of bacterial DNA to neutrophils is a receptor-mediated process that conditions the ability of DNA to trigger cell activation. We speculate that neutrophil recognition of bacterial DNA might be modulated by the balance of agonists present at inflammatory foci. This effect might be relevant in bacterial infections with a biofilm etiology, in which extracellular DNA could function as a potent neutrophil agonist. © 2008 USCAP, Inc All rights reserved.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Fuxman Bass, J.I. - Russo, D.M. - Gabelloni, M.L. - Geffner, J.R. - Giordano, M. - Catalano, M. - Zorreguieta, Á. - Trevani, A.S.
J. Immunol. 2010;184(11):6386-6395
2010

Descripción: We previously demonstrated that extracellular bacterial DNA activates neutrophils through a CpG- and TLR9-independent mechanism. Biofilms are microbial communities enclosed in a polymeric matrix that play a critical role in the pathogenesis of many infectious diseases. Because extracellular DNA is a key component of biofilms of different bacterial species, the aim of this study was to determine whether it plays a role in the ability of biofilms to induce human neutrophil activation. We found that degradation of matrix extracellular DNA with DNase I markedly reduced the capacity of Pseudomonas aeruginosa biofilms to induce the release of the neutrophil proinflammatory cytokines IL-8 and IL-1β (>75%); reduced the upregulation of neutrophil activation markers CD18, CD11b, and CD66b (p < 0.001); reduced the number of bacteria phagocytosed per neutrophil contacting the biofilm; and reduced the production of neutrophil extracellular traps. Consistent with these findings, we found that biofilms formed by the lasI rhlI P. aeruginosa mutant strain, exhibiting a very low content of matrix extracellular DNA, displayed a lower capacity to stimulate the release of proinflammatory cytokines by neutrophils, which was not decreased further by DNase I treatment. Together, our findings support that matrix extracellular DNA is a major proinflammatory component of P. aeruginosa biofilms. Copyright © 2010 by The American Association of Immunologists, Inc.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Zerdiew, A. - Mazzarella, R. - Vargas, D.V. - Rodriguez, A. - Palaoro, L.
Medicina (Argentina) 2007;67(4):360-362
2007

Descripción: Nasal secretions were studied in 80 allergic adults patients: 16 with intermittent rhinitis and 64 with persistent rhinitis. The percentage of supranuclear stria of ciliated cells with regard to leucocytes was studied by nasal scraping. Four groups of patients were classified according to nasal leucocytic predominance: patients with eosinophilic predominance with eosinophils > 10% in Group A (N=23), patients with abundant neutrophils and eosinophils > 10% in Group B (N=15), patients with scant leucocytes in Group C (N=29), patients with neutrophilic predominance without eosinophils in Group D (N=13). An increase of supranuclear stria percentage was correlated to eosinophils > 10% and also correlated to scant leucocytes. Nevertheless, a significant decrease of supranuclear stria percentage was observed in neutrophilic leukocytosis of bacterial etiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Croci, D.O. - Cumashi, A. - Ushakova, N.A. - Preobrazhenskaya, M.E. - Piccoli, A. - Totani, L. - Ustyuzhanina, N.E. - Bilan, M.I. - Usov, A.I. - Grachev, A.A. - Morozevich, G.E. - Berman, A.E. - Sanderson, C.J. - Kelly, M. - Gregorio, P. - Rossi, C. - Tinari, N. - Iacobelli, S. - Rabinovich, G.A. - Nifantiev, N.E.
PLoS ONE 2011;6(2)
2011

Descripción: Sulfated polysaccharides from Laminaria saccharina (new name: Saccharina latissima) brown seaweed show promising activity for the treatment of inflammation, thrombosis, and cancer; yet the molecular mechanisms underlying these properties remain poorly understood. The aim of this work was to characterize, using in vitro and in vivo strategies, the anti-inflammatory, anti-coagulant, anti-angiogenic, and anti-tumor activities of two main sulfated polysaccharide fractions obtained from L. saccharina: a) L.s.-1.0 fraction mainly consisting of O-sulfated mannoglucuronofucans and b) L.s.-1.25 fraction mainly composed of sulfated fucans. Both fractions inhibited leukocyte recruitment in a model of inflammation in rats, although L.s.-1.25 appeared to be more active than L.s.-1.0. Also, these fractions inhibited neutrophil adhesion to platelets under flow. Only fraction L.s.-1.25, but not L.s.-1.0, displayed anticoagulant activity as measured by the activated partial thromboplastin time. Investigation of these fractions in angiogenesis settings revealed that only L.s.-1.25 strongly inhibited fetal bovine serum (FBS) induced in vitro tubulogenesis. This effect correlated with a reduction in plasminogen activator inhibitor-1 (PAI-1) levels in L.s.-1.25-treated endothelial cells. Furthermore, only parent sulfated polysaccharides from L. saccharina (L.s.-P) and its fraction L.s.-1.25 were powerful inhibitors of basic fibroblast growth factor (bFGF) induced pathways. Consistently, the L.s.-1.25 fraction as well as L.s.-P successfully interfered with fibroblast binding to human bFGF. The incorporation of L.s.-P or L.s.-1.25, but not L.s.-1.0 into Matrigel plugs containing melanoma cells induced a significant reduction in hemoglobin content as well in the frequency of tumor-associated blood vessels. Moreover, i.p. administrations of L.s.-1.25, as well as L.s.-P, but not L.s.-1.0, resulted in a significant reduction of tumor growth when inoculated into syngeneic mice. Finally, L.s.-1.25 markedly inhibited breast cancer cell adhesion to human platelet-coated surfaces. Thus, sulfated fucans are mainly responsible for the anti-inflammatory, anticoagulant, antiangiogenic, and antitumor activities of sulfated polysaccharides from L. saccharina brown seaweed. © 2011 Croci et al.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo