por que contenga las palabras

Busqueda avanzada

2 documentos corresponden a la consulta.
Palabras contadas: 11beta: 3, hydroxysteroid: 5, dehydrogenase: 33, 2: 528
Zallocchi, M.L. - Damasco, M.C. - Calvo, J.C. - Lantos, C.P. - Matkovic', L.B.
Biocell 2006;30(3):469-477
2006

Descripción: Prior to this work, we found that adrenal as well as extra-adrenal factors activate the response of renal l 11β-hydroxysteroid dehydrogenase 2 to stressful situations. These results -showing ways through which the organism hinders the pathological occupation of mineralocorticoid receptors by glucocorticoids leading to sodium retention and hypertension- prompted the present study on the nature of the above-mentioned extra-adrenal factors. Serotonin was chosen because of its properties as a widely distributed neurohormone, known to interact with glucocorticoids at many sites, also exhibiting increased levels and effects under stressful situations. We studied serotonin effects on 11β-hydroxysteroid dehydrogenase 2 activity in a cell line derived from distal nephron polarized-epithelium, employing 3H-corticosterone as substrate. The end-product, 3H-11- dehydrocorticosterone was separated from the substrate by HPLC and quantified. Serotonin stimulated 11β-hydroxysteroid dehydrogenase 2 activity only at 2nM and 25pM, the magnitude of the response depending also on substrate concentration. The stimulation was blocked by the specific inhibitors methiothepin and ketanserin. We postulate that the organism partially prevents renal mineralocorticoid receptor occupancy by glucocorticoids, circulating at enhanced levels under stressful situations, through serotonin-mediated catabolic regulation of the 11β-hydroxysteroid dehydrogenase 2 activity. Given many, mostly positive, interactions between both hormones, this might eventually pave the way to studies on a new regulatory axis.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Morita, H. - Zhou, M. - Foecking, M.F. - Gomez-Sanchez, E.P. - Cozza, E.N. - Gomez-Sanchez, C.E.
ENDOCRINOLOGY 1996;137(6):2308-2314
1996

Descripción: The 11β-hydroxysteroid dehydrogenase type 2 (11βHSD-2) enzyme is thought to confer aldosterone specificity upon mineralocorticoid target tissues by protecting the mineralocorticoid receptor from binding by the more abundant glucocorticoids, corticosterone and cortisol. We have developed a Chinese hamster ovary cell line stably transfected with a plasmid containing the rat 11βHSD-2 complementary DNA. This cell line has expressed the enzyme consistently for many generations. The 11βHSD-2 was located primarily in the microsomes, but significant amounts also existed in the nuclei and mitochondria. The enzymatic reaction was unidirectional, oxidative, and inhibited by the product, 11-dehydrocorticosterone, with an IC50 of approximately 200 nM. The K(m) for corticosterone was 9.6 ± 3.1 nM, and that for NAD+ was approximately 8 μM. The enzyme did not convert dexamethasone to 11-dehydrodexamethasone. Tunicamycin, an N-glycosylation inhibitor, had no effect on enzyme activity, 11α-Hydroxyprogesterone (11αOH-P) was an order of magnitude more potent a competitive inhibitor of the 11βHSD-2 than was glycyrrhetinic acid (GA) (approximate IC50 0.9 vs. 15 nM). 11βOH-P, progesterone, and GA were almost equipotent (IC50 = 10 and 6 nM, respectively), and 5α-pregnandione and 5β-pregnandione were less potent (IC50 = 100 and 500 nM, respectively) inhibitors of the enzyme. When the inhibitory activities were examined with intact transfected cells, 11αOH-P was more potent than GA (IC50 = 5 and 150 nM, respectively). 11αOH-P was not metabolized by 11βHSD-2. We were unable to demonstrate the presence of 11αOH-P in human urine. In conclusion, a cell line stably transfected with the rat 11βHSD-2 was created, and the enzyme kinetics, including inhibition, were characterized. 11αOH-P was found to be a potent relatively specific inhibitor of the 11βHSD-2 enzyme. Its potential importance is that it is the most specific inhibitor of the 11βHSD-2 so far encountered and would aid in the study of the physiological importance of the isoenzyme.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo