por que contenga las palabras

Busqueda avanzada

4 documentos corresponden a la consulta.
Palabras contadas: aminobutyric: 19, γ: 37, acid: 452
Garcia, S.C. - Moretti, M.B. - Batlle, A.
FEMS Microbiol. Lett. 2000;184(2):219-224
2000

Descripción: The first specific precursor of porphyrin biosynthesis is δ-aminolevulinic acid. δ-Aminolevulinic acid enters Saccharomyces cerevisiae cells through the γ-aminobutyric acid specific permease Uga4p. It was described that this permease is inducible by γ-aminobutyric acid and its regulation involves several specific and pleiotropic transcriptional factors. However, some studies showed that under certain growth conditions the synthesis of Uga4p was not dependent on the presence of γ-aminobutyric acid. To study the effect of the trans-acting factors Uga43p, Uga3p, Uga35p, Ure2p and Gln3p on the expression of UGA4, we measured γ-aminobutyric acid and δ-aminolevulinic acid uptake in yeast mutant cells, lacking one of these regulatory factors, grown under different conditions. Experiments analyzing the UGA4 promoter using a fusion construction UGA4::lacZ were also carried out. The results show that the constitutive expression of the UGA4 gene found in cells under certain growth conditions depends on the presence of Uga3p and Uga35p. In contrast, Gln3p and Ure2p do not seem to have any effect on this constitutive mechanism. Copyright (C) 2000 Federation of European Microbiological Societies.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Cardillo, S.B. - Moretti, M.B. - García, S.C.
Eukaryotic Cell 2010;9(8):1262-1271
2010

Descripción: The Saccharomyces cerevisiae UGA4 gene encodes a permease capable of importing γ-aminobutyric acid (GABA) and δ-aminolevulinic acid (ALA) into the cell. GABA-dependent induction of this permease requires at least two positive-acting proteins, the specific factor Uga3 and the pleiotropic factor Uga35/Dal81. UGA4 is subjected to a very complex regulation, and its induction is affected by the presence of extracellular amino acids; this effect is mediated by the plasma membrane amino acid sensor SPS. Our results show that leucine affects UGA4 induction and that the SPS sensor and the downstream effectors Stp1 and Stp2 participate in this regulation. Moreover, we found that the Uga3 and Uga35/Dal81 transcription factors bind to the UGA4 promoter in a GABA-dependent manner and that this binding is impaired by the presence of leucine. We also found that the Leu3 transcription factor negatively regulates UGA4 transcription, although this seems to be through an indirect mechanism. © 2010, American Society for Microbiology.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Correa García, S. - Casas, A. - Perotti, C. - Batlle, A. - Bermúdez Moretti, M.
Br. J. Cancer 2003;89(1):173-177
2003

Descripción: δ-aminolevulinic acid (ALA) is the precursor in the biosynthesis of porphyrins. The knowledge of both the regulation of ALA entrance and efflux from the cells and the control of porphyrin biosynthesis is essential to improve ALA-mediated photodynamic therapy. In this work, we studied the regulation of ALA uptake and efflux by endogenously accumulated ALA and/or porphyrins in murine mammary adenocarcinoma cells. Under our set of conditions, the haem synthesis inhibitor succinyl acetone completely prevented porphobilinogen and porphyrin synthesis from ALA, and led to an increase in the intracellular ALA pool. However, neither intracellular ALA nor porphyrin pools regulate ALA uptake or efflux during the first 15 min of the process. Based on temperature dependence data, ALA but not γ-aminobutyric acid (GABA) efflux is mediated by a diffusion mechanism. Moreover, the addition of extracellular GABA not only did not influence the rate of ALA efflux but on the contrary it affected ALA uptake, showing the contribution of a saturable mechanism for the uptake, but not for the efflux of ALA from the cells. © 2003 Cancer Research UK.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Luzzani, C. - Cardillo, S.B. - Moretti, M.B. - García, S.C.
Microbiology 2007;153(11):3677-3684
2007

Descripción: The Saccharomyces cerevisiae UGA4 gene, which encodes the γ-aminobutyric acid (GABA) and δ-aminolaevulinic acid (ALA) permease, is well known to be regulated by the nitrogen source. Its expression levels are low in the presence of a rich nitrogen source but are higher when a poor nitrogen source is used. In addition, GABA can induce UGA4 expression when cells are grown with proline but not when they are grown with ammonium. Although vast amounts of evidence have been gathered about UGA4 regulation by nitrogen, little is known about its regulation by the carbon source. Using glucose and acetate as rich and poor carbon source respectively, this work aimed to shed light on hitherto unclear aspects of the regulation of this gene. In poor nitrogen conditions, cells grown with acetate were found to have higher UGA4 basal expression levels than those grown with glucose, and did not show UGA4 induction in response to GABA. Analysis of the expression and subcellular localization of the transcription factors that regulate UGA4 as well as partial deletions and site-directed mutations of the UGA4 promoter region suggested that there are two parallel pathways that act in regulating this gene by the carbon source. Furthermore, the results demonstrate the existence of a new factor operating in UGA4 regulation. © 2007 SGM.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo