por que contenga las palabras

Busqueda avanzada

5 documentos corresponden a la consulta.
Palabras contadas: tomsic: 8, d: 217
Oliva, D. - Tomsic, D.
J. Exp. Biol. 2012;215(19):3488-3500
2012

Descripción: Escape responses to directly approaching predators represent one instance of an animal's ability to avoid collision. Usually, such responses can be easily evoked in the laboratory using two-dimensional computer simulations of approaching objects, known as looming stimuli. Therefore, escape behaviors are considered useful models for the study of computations performed by the brain to efficiently transform visual information into organized motor patterns. The escape response of the crab Neohelice (previously Chasmagnathus) granulata offers an opportunity to investigate the processing of looming stimuli and its transformation into complex motor patterns. Here we studied the escape performance of this crab to a variety of different looming stimuli. The response always consisted of a vigorous run away from the stimulus. However, the moment at which it was initiated, as well as the developed speed, closely matched the expansion dynamics of each particular stimulus. Thus, we analyzed the response events as a function of several variables that could theoretically be used by the crab (angular size, angular velocity, etc.). Our main findings were that: (1) the decision to initiate the escape run is made when the stimulus angular size increases by 7 deg; (2) the escape run is not a ballistic kind of response, as its speed is adjusted concurrently with changes in the optical stimulus variables; and (3) the speed of the escape run can be faithfully described by a phenomenological input-output relationship based on the stimulus angular increment and the angular velocity of the stimulus. © 2012. Published by The Company of Biologists Ltd.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Sztarker, J. - Tomsic, D.
J. Neurosci. 2011;31(22):8175-8180
2011

Descripción: Experiments with insects and crabs have demonstrated their remarkable capacity to learn and memorize complex visual features (Giurfa et al., 2001; Pedreira and Maldonado, 2003; Chittka and Niven, 2009). Such abilities are thought to require modular brain processing similar to that occurring in vertebrates (Menzel and Giurfa, 2001). Yet, physiological evidence for this type of functioning in the small brains of arthropods is still scarce (Liu et al., 1999, 2006; Menzel and Giurfa, 2001). In the crab Chasmagnathus granulatus, the learning rate as well as the long-term memory of a visual stimulus has been found to be reflected in the performance of identified lobula giant neurons (LGs) (Tomsic et al., 2003). The memory can only be evoked in the training context, indicating that animals store two components of the learned experience, one related to the visual stimulus and one related to the visual context (Tomsic et al., 1998; Hermitte et al., 1999). By performing intracellular recordings in the intact animal, we show that the ability of crabs to generalize the learned stimulus into new space positions and to distinguish it from a similar but unlearned stimulus, two of the main attributes of stimulus memory, is reflected by the performance of the LGs. Conversely, we found that LGs do not support the visual context memory component. Our results provide physiological evidence that the memory traces regarding "what" and "where" are stored separately in the arthropod brain. © 2011 the authors.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Maldonado, H. - Romano, A. - Tomsic, D.
Braz. J. Med. Biol. Res. 1997;30(7):813-826
1997

Descripción: A decade of studies on long-term habituation (LTH) in the crab Chasmagnathus is reviewed. Upon sudden presentation of a passing object overhead, the crab reacts with an escape response that habituates promptly and for at least five days. LTH proved to be an instance of associative memory and showed context, stimulus frequency and circadian phase specificity. A strong training protocol (STP) (≥15 trials, intertriai interval (ITI) of 171 s) invariably yielded LTH, while a weak training protocol (WTP) (≤10 trials, ITI = 171 s) invariably failed. STP was used with a presumably amnestic agent and WTP with a presumably hypermnestic agent. Remarkably, systemic administration of low doses was effective, which is likely to be due to the lack of an endothelial blood-brain barrier. LTH was blocked by inhibitors of protein and RNA synthesis, enhanced by protein kinase A (PKA) activators and reduced by PKA inhibitors, facilitated by angiotensin II and IV and disrupted by saralasin. The presence of angiotensins and related compounds in the crab brain was demonstrated. Diverse results suggest that LTH includes two components: an initial memory produced by spaced training and mainly expressed at an initial phase of testing, and a retraining memory produced by massed training and expressed at a later phase of testing (retraining). The initial memory would be associative, context specific and sensitive to cycloheximide, while the retraining memory would be nonassociative, context independent and insensitive to cycloheximide.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Tomsic, D. - Berón de Astrada, M. - Sztarker, J.
J. Neurosci. 2003;23(24):8539-8546
2003

Descripción: Ideally, learning-related changes should be investigated while they occur in vivo, but physical accessibility and stability limit intracellular studies. Experiments with insects and crabs demonstrate their remarkable capacity to learn and memorize visual features. However, the location and physiology of individual neurons underlying these processes is unknown. A recently developed crab preparation allows stable intracellular recordings from the optic ganglia to be performed in the intact animal during learning. In the crab Chasmagnathus, a visual danger stimulus (VDS) elicits animal escape, which declines after a few stimulus presentations. The long-lasting retention of this decrement is mediated by an association between contextual cues of the training site and the VDS, therefore, called context-signal memory (CSM). CSM is achieved only by spaced training. Massed training, on the contrary, produces a decline of the escape response that is short lasting and, because it is context independent, is called signal memory (SM). Here, we show that movement detector neurons (MDNs) from the lobula (third optic ganglion) of the crab modify their response to the VDS during visual learning. These modifications strikingly correlate with the rate of acquisition and with the duration of retention of both CSM and SM. Long-term CSM is detectable from the response of the neuron 1 d after training. In contrast to MDNs, identified neurons from the medulla (second optic ganglion) show no changes. Our results indicate that visual memory in the crab, and possibly other arthropods, including insects, is accounted for by functional changes occurring in neurons originating in the optic lobes.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Pedreira, M.E. - Romano, A. - Tomsic, D. - Lozada, M. - Maldonado, H.
Anim. Learn. Behav. 1998;26(1):34-45
1998

Descripción: The crab Chasmagnathus granulatus reacts to a shadow passing overhead with an escape response that habituates after 30 trials and for 5 days at least. The effect of a wide range of different intertrial intervals (ITIs) (0, 9, 27, 45, 81, 135, and 171 sec) on the Chasmagnathus long-term habituation (LTH) was evaluated at 24 h. Memory retention was estimated separately at two phases of a six-trial testing session: at first trial (the initial testing phase) and at the subsequent block of five trials (the retraining phase). A training of 30 trials with an ITI equal to or longer than 27 sec induced LTH at both testing phases, however, with a 0- or a 9- sec ITI, training wholly failed to build up LTH. When the number of trials was increased, a massed training (ITI = 0 or 9 sec) induced LTH at re- training but not at initial testing. Thus, massed training produces LTH only at retraining, whereas spaced training (ITI ≤ 27 sec) produces LTH at both initial phase and retraining. An ITI shift from training to testing diminished or abolished retention at retraining regardless of the direction of the shift, thus suggesting that crabs acquire a memory of the trial- spacing at training. According to these results, it is postulated that LTH consists of two memory components: one produced by spaced training and expressed at both initial testing and retraining, and one yielded by massed training and expressed only at retraining. The possibility that the two components of LTH were differentially affected by cycloxemide and context shift is discussed.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo