por que contenga las palabras

Busqueda avanzada

9 documentos corresponden a la consulta.
Palabras contadas: mancinelli: 10, b: 70
Mancinelli, B. - Prevosto, L. - Minotti, F.O.
J. Phys. Conf. Ser. 2012;370(1)
2012

Descripción: Double-arcing is a phenomenon that occurs when a transferred arc, flowing inside an electrically insulated nozzle, breaks into two separate arcs: one that connects the cathode with the nozzle, and another that connects the nozzle with the anode. Experimental evidence suggests that the reason for double-arcing is a Townsend like breakdown occurring in the thin space-charge layer, which separates the plasma from the metallic nozzle, due to the high voltage drop across it. Breakdown phenomena in a gas between metallic electrodes have been extensively studied; however the present case involves breakdown of a high-temperature gas between one electrode (the nozzle) and a plasma boundary. A 1-D model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen is reported. The dynamics of the discharge is analyzed. The kinetic scheme includes processes of ionization of heavy particles by electron impact, electron attachment, electron-ion recombination and ion-ion recombination.
...ver más

Tipo de documento: info:ar-repo/semantics/documento de conferencia

Prevosto, L. - Kelly, H. - Mancinelli, B.
J Appl Phys 2009;106(5)
2009

Descripción: Measurements of plasma velocities in a 30 A high energy density cutting torch are reported. The velocity diagnostic is based on the analysis of the light fluctuations emitted by the arc which are assumed to propagate with the flow velocity. These light fluctuations originate from plasma temperature and plasma density fluctuations mainly due to hydrodynamic instabilities. Fast photodiodes are employed as the light sensors. The arc core velocity was obtained from spectrally filtered light fluctuations measurements using a band-pass filter to detect light emission fluctuations emitted only from the arc axis. Maximum plasma jet velocities of 5000 m s -1 close to the nozzle exit and about 2000 m s -1 close to the anode were found. The obtained velocity values are in good agreement with those values predicted by a numerical code for a similar torch to that employed in this work. © 2009 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Prevosto, L. - Kelly, H. - Mancinelli, B.
J Appl Phys 2009;105(12)
2009

Descripción: A numerical study of the space-charge sheath adjacent to the nozzle wall of a cutting torch is presented. The hydrodynamic model corresponds to a collision-dominated sheath and does not assume cold ions, so drift-diffusion-type equations are used. Also an improved expression for the ion-neutral momentum transfer is employed rather than the usual constant ion-mean-free-path or constant ion collision frequency approximations. Assuming a constant electron temperature in the sheath and neglecting the electron inertial term, the continuity and momentum equations for ions and electrons, together with Poisson's equation, were solved for the electric potential, ion velocities (both normal and tangential components), and for the ion and electron densities. It was found that both the ion and electron densities present a sudden drop at the sheath-plasma edge. The ion density continues to decrease slowly inside the sheath, while the electron density presents a virtually zero value everywhere inside the sheath, the electron thermal conduction flux to the nozzle wall being negligible. These wall results thus become thermally isolated in spite of the high electron temperature in its adjacency. For a nozzle biasing voltage close to the gas breakdown, it was found that the electric field value is high, reaching a value of about 9× 106 V m-1 at the exit of the nozzle wall. This value is higher than the average field value across the sheath and is on the order of the breakdown threshold value. This means that an undesired sheath breakdown could occur at the vicinities of the nozzle exit even if the average electric field across the sheath is not strong enough. © 2009 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Prevosto, L. - Kelly, H. - Mancinelli, B.
J Appl Phys 2011;110(8)
2011

Descripción: Experimental observations on the plasma dynamics inside the nozzle of a 30 A oxygen cutting torch operated at conditions close to the double arcing are reported. It is employed a technique previously developed in our laboratory consisting in using the nozzle as a large-sized Langmuir probe. Based on the behavior of the ion current signal and simple estimations, it is concluded that (1) the non-equilibrium plasma inside the nozzle is far from the steady state in time, in contrast to what is frequently assumed. The power supply ripple was identified as the main fluctuations source and (2) large-scale plasma fluctuations inside the nozzle could cause transient (total duration of the order of 100 μs) Townsend avalanches developing in the space-charge layer located between the arc plasma and the nozzle wall. Such events trigger the so called non-destructive double-arcing phenomena without appealing to the presence of insulating films deposited inside the nozzle orifice, as was previously proposed in the literature. © 2011 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Kelly, H. - Minotti, F.O. - Prevosto, L. - Mancinelli, B.
Braz. J. Phys. 2004;34(4 B):1531-1537
2004

Descripción: We present a simple hydrodynamic model to obtain the profiles of the relevant physical quantities along a nozzle of arbitrary cross-section in a cutting torch. The model uses a two-zone approximation (a hot central plasma carrying the discharge current wrapped by a relatively cold gas which thermally isolates the nozzle wall from the plasma). Seeking for a solution with sonic conditions at the nozzle exit, the model allows expressing all the profiles in terms of the externally controlled parameters of the torch (geometry of the torch, discharge current, mass flow of the gas and plenum pressure) and the values of the arc and gas temperatures at the nozzle entrance. These last two values can be estimated simply appealing to energy conservation in the cathode-nozzle region. The model contains additional features compared with previous reported models, while retaining simplicity. The detailed consideration of an arc region coupled to the surrounding gas dynamics allows determining voltage drops and consequent delivered power with less assumptions than those found in other published works, and at the same time reduces the set of parameters needed to determine the solution.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Prevosto, L. - Artana, G. - Kelly, H. - Mancinelli, B.
J Appl Phys 2011;109(6)
2011

Descripción: A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred. © 2011 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Prevosto, L. - Artana, G. - Mancinelli, B. - Kelly, H.
J Appl Phys 2010;107(2)
2010

Descripción: Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes. © 2010 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Prevosto, L. - Kelly, H. - Minotti, F.O. - Mancinelli, B.
AIP Conf. Proc. 2006;875:207-210
2006

Descripción: Anode-cathode and nozzle-cathode voltages, plenum pressure and gas mass flow measurements in a low current (30 A) cutting torch, operated with oxygen gas, are used as inputs for an electrical model coupled to a simplified fluid model, in order to infer some properties of the plasma-gas structure that are difficult to measure. © 2006 American Institute of Physics.
...ver más

Tipo de documento: info:ar-repo/semantics/artículo

Prevosto, L. - Risso, M. - Infante, D. - Cejas, E. - Kelly, H. - Mancinelli, B.
J. Phys. Conf. Ser. 2012;370(1)
2012

Descripción: The dynamic behavior of the anode-arc-root at the nozzle surface of a plasma torch was experimentally investigated in this work. A gas (N2) vortex-stabilized non-transferred arc torch with a thoriated tungsten rod (2wt %) cathode (3.2 mm diameter) and a coaxial anode (5 mm diameter, 30 mm length) was used in the experiment. By using a sweeping Langmuir probe in floating condition, the voltage of the plasma jet outside the nozzle was inferred. Arc voltage waveforms were also obtained. Data have been obtained for an arc current of 100 A and a gas flow rate of 30 Nl min-1. A typical sawtooth shape (i.e., restrike mode) (with a fluctuating level of ≈ ± 25 %) and a dominant frequency of ≈ 6.5 kHz was observed in the arc voltage waveforms, which is attributed to anode-arc-root movements along the anode surface followed by a restrike at a certain point close to the cathode. By performing a time correlation between the probe and arc voltage oscillograms together with simple estimations, the amplitude of the movement of the arc-root along the anode surface as well its velocity were inferred.
...ver más

Tipo de documento: info:ar-repo/semantics/documento de conferencia