En:
New J. Phys. 2013;15
Fecha:
2013
Formato:
application/pdf
Tipo de documento:
info:eu-repo/semantics/article
info:ar-repo/semantics/artículo
info:eu-repo/semantics/publishedVersion
Descripción:
Unitary transformations can allow one to study open quantum systems in situations for which standard, weak-coupling type approximations are not valid. We develop here an extension of the variational (polaron) transformation approach to open system dynamics, which applies to arbitrarily large exciton transport networks with local environments. After deriving a time-local master equation in the transformed frame, we go on to compare the population dynamics predicted using our technique with other established master equations. The variational frame dynamics are found to agree with both weak coupling and full polaron master equations in their respective regions of validity. In parameter regimes considered difficult for these methods, the dynamics predicted by our technique are found to interpolate between the two. The variational method thus gives insight, across a broad range of parameters, into the competition between coherent and incoherent processes in determining the dynamical behaviour of energy transfer networks. © IOP Publishing and Deutsche Physikalische Gesellschaft.
Derechos:
info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar

Descargar texto: paper_13672630_v15_n_p_Pollock.oai (tamaño kb)

Cita bibliográfica:

Pollock, F.A. (2013). A multi-site variational master equation approach to dissipative energy transfer  (info:eu-repo/semantics/article).  [consultado:  ] Disponible en el Repositorio Digital Institucional de la Universidad de Buenos Aires:  <http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&cl=CL1&d=paper_13672630_v15_n_p_Pollock_oai>