> > >
untitled

Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation

Soto, G. - Stritzler, M. - Lisi, C. - Alleva, K. - Pagano, M.E. - Ardila, F. - Mozzicafreddo, M. - Cuccioloni, M. - Angeletti, M. - Ayub, N.D.
   
Fecha:
2011
Tipo de documento: 
info:eu-repo/semantics/article
info:ar-repo/semantics/artículo
info:eu-repo/semantics/publishedVersion
Formato:
application/pdf
Temas:
Abiotic stress - acetoacetyl-CoA thiolase - isoprenoid - MVA pathway - thiolase II - acetyl coenzyme A acetyltransferase - mevalonic acid - pravastatin - squalene - vegetable protein - alfalfa - article - drug effect - genetics - metabolism - plant leaf - plant root - real time polymerase chain reaction - signal transduction - transgenic plant - Acetyl-CoA C-Acetyltransferase - Medicago sativa - Mevalonic Acid - Plant Leaves - Plant Proteins - Plant Roots - Plants, Genetically Modified - Pravastatin - Real-Time Polymerase Chain Reaction - Signal Transduction - Squalene
Descripción:
Acetoacetyl-CoA thiolase (EC 2.3.1.9), also called thiolase II, condenses two molecules of acetyl-CoA to give acetoacetyl-CoA. This is the first enzymatic step in the biosynthesis of isoprenoids via mevalonate (MVA). In this work, thiolase II from alfalfa (MsAACT1) was identified and cloned. The enzymatic activity was experimentally demonstrated in planta and in heterologous systems. The condensation reaction by MsAACT1 was proved to be inhibited by CoA suggesting a negative feedback regulation of isoprenoid production. Real-time RT-PCR analysis indicated that MsAACT1 expression is highly increased in roots and leaves under cold and salinity stress. Treatment with mevastatin, a specific inhibitor of the MVA pathway, resulted in a decrease in squalene production, antioxidant activity, and the survival of stressed plants. As expected, the presence of mevastatin did not change chlorophyll and carotenoid levels, isoprenoids synthesized via the plastidial MVA-independent pathway. The addition of vitamin C suppressed the sensitive phenotype of plants challenged with mevastatin, suggesting a critical function of the MVA pathway in abiotic stress-inducible antioxidant defence. MsAACT1 over-expressing transgenic plants showed salinity tolerance comparable with empty vector transformed plants and enhanced production of squalene without altering the 3-hydroxy-3-methylglutaryl- CoA reductase (HMGR) activity in salt-stress conditions. Thus, acetoacetyl-CoA thiolase is a regulatory enzyme in isoprenoid biosynthesis involved in abiotic stress adaptation. © 2011 The Author.
Fil:Soto, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Stritzler, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Ardila, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Ayub, N.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente:
J. Exp. Bot. 2011;62(15):5699-5711
Identificador:
http://hdl.handle.net/20.500.12110/paper_00220957_v62_n15_p5699_Soto
http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00220957_v62_n15_p5699_Soto_oai
Derechos:
info:eu-repo/semantics/openAccess

Cita bibliográfica:

Soto, G. ; Stritzler, M. ; Lisi, C. ; et al. (2011).  Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation.  (info:eu-repo/semantics/article).  [consultado:  ] Disponible en el Repositorio Digital Institucional de la Universidad de Buenos Aires:  <http://hdl.handle.net/20.500.12110/paper_00220957_v62_n15_p5699_Soto>