untitled

Estimación robusta en modelos parcialmente lineales generalizados


Robust estimation in generalized partially linear models

Rodríguez, Daniela A.

Director(a):
Boente Boente, Graciela
 
Institución otorgante:
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires
Fecha:
2007
Tipo de documento: 
Tesis Doctoral
 
Formato:
text; pdf
Idioma:
Español
Temas:
Matemática / Estadística y Probabilidad - ESTIMADORES DE NUCLEOS - ESTIMADORES ROBUSTOS - MODELOS PARCIALMENTE LINEALES - SUAVIZADORES - TASA DE CONVERGENCIA
Descripción:
En esta tesis, introducimos una nueva clase de estimadores robustos para las componentes paramétricas y noparamétricas bajo dos modelos parcialmente lineales generalizados. En el primero, las observaciones independientes (yi, xi, ti), 1 = i = n satisfacen yi| (xi, ti) ~ F (·, µi) con µi = H (n(ti) + xti ß), para una función de distribución F y una función de vínculo H conocidas, donde ti e IR, xi e IR^p. La función n : IR --IR y el parámetro ß son las cantidades a estimar. Los estimadores robustos se basan en un procedimiento en dos pasos en el que valores grandes de la deviance o de los residuos de Pearson se controlan a través de una función de escores acotada. Los estimadores robustos de ß resultan ser n^1/2-consistentes y asintóticamente normales. El comportamiento de estos estimadores se compara con el de los estimadores clásicamente usados, a través de un estudio de Monte Carlo. Por otra parte, la función de influencia empírica permite estudiar la sensibilidad de los estimadores. El modelo generalizado parcialmente lineal de índice simple, generaliza el anterior pues las observaciones independientes son tales que yi| (xi, ti) ~ F (·, µi) con µi = H (n(a tti) + xtiß), donde ahora ti e IR^q, xi e IR^p y la función ß : IR -- IR y los parámetros ß y a (|| a|| =1) son desconocidos y se desean estimar. Introducimos dos familias de estimadores robustos que resultan ser consistentes y asintóticamente normales. Calculamos también su función de influencia empírica. Todas las propuestas dadas mejoran el comportamiento de los estimadores clásicos en presencia de observaciones atípicas.
Identificador:
http://digital.bl.fcen.uba.ar/gsdl-282/cgi-bin/library.cgi?a=d&c=tesis&d=Tesis_4240_Rodriguez
Identificador único:
http://repositoriouba.sisbi.uba.ar/h/3711
Derechos:
info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Licencia de uso:
Licencia Creative Commons


Cita bibliográfica:

Rodríguez, Daniela A.  (2007).     Estimación robusta en modelos parcialmente lineales generalizados.  (Tesis Doctoral).    Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.    [consultado:  ] Disponible en el Repositorio Digital Institucional de la Universidad de Buenos Aires:  <http://digital.bl.fcen.uba.ar/gsdl-282/cgi-bin/library.cgi?a=d&c=tesis&d=Tesis_4240_Rodriguez>