untitled
Autofunciones de billar de Bunimovich en representación de estados coherentes
Eigenfunctions of Bunimovich billiard in coherent state representation
Poó Simonotti, Fernando
Director(a):
Saraceno, Marcos
Institución otorgante:
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
Fecha:
2000
Tipo de documento:
info:eu-repo/semantics/doctoralThesis
Formato:
application/pdf
Idioma:
spa
Temas:
CAOS CUANTICO - LIMITE SEMICLASICO - METODOS DE FREDHOLM - SCARS - ESTADIO DE BUNIMOVICH - QUANTUM CHAOS - SEMICLASSICAL LIMIT - FREDHOLM METHODS - SCARS - BUNIMOVICH STADIUM
Descripción:
En este trabajo estudiamos las autofunciones de sistemas caóticos en el límitesemiclásico. En particular centramos nuestro análisis en el fenómeno de scarring,por el cual los máximos de densidad de probabilidad están a lo largode las trayectorias periódicas del sistema clásico correspondiente. A tal efectodesarrollamos un método que permite detectar la presencia de scars en el espectro. Empleando esta construcción en el billar estadio podemos, mediantela dinámica simbólica, identificar scars de órbitas periódicas individuales y defamilias de ellas en el espectro cuántico. Además, a través del desarrollo dela teoría de Fredholm para las autofunciones del billar, obtenemos una expresiónsemiclásica para el proyector sobre las autofunciones. Eligiendo labase de estados coherentes para expresar el proyector obtenemos la representaciónde Husimi semiclásica de las autofunciones del estadio, que se escribeen términos de invariantes clásicos: puntos periódicos, sus matrices demonodromía e índices de Maslov.
Identificador:
https://hdl.handle.net/20.500.12110/tesis_n3237_PooSimonotti
Derechos:
info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Descargar texto: tesis_n3237_PooSimonotti.oai
Cita bibliográfica:
Poó Simonotti, Fernando (2000). Autofunciones de billar de Bunimovich en representación de estados coherentes. (info:eu-repo/semantics/doctoralThesis). Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. [consultado: ] Disponible en el Repositorio Digital Institucional de la Universidad de Buenos Aires: <https://hdl.handle.net/20.500.12110/tesis_n3237_PooSimonotti>